{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter 3 80

# Chapter 3 80 - 230 CHAPTER 3 DIFFERENTIATION RULES 11 f(x...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 230 CHAPTER 3 DIFFERENTIATION RULES 11. f(x) = \3/—_1-ac = (1 —:r)1/3 :> my) : —g(1—e)r2/3.se 2 f(0) : land f'(0) = —%. Thus. f(\$)%f(0)+fl(0)(me0):1—ém.Weneed \ I 3/1 - a: — 0.1 <1—%;I: < 13/1 — as + 0.1. which is true when n L -2 —1.204 < m < 0.706. 12. ﬂat) 2 tanm => f’ (:r) 2 SCC2 1:. so f(0) = 0 and f’(0) = 1. 1 Thus. f(m) % f(0) -I— f'(0)(ac , 0) : 0+ 1(1: # 0) : 2:. We need tang: — 0.1 < w < tans: + 0.1. which is true when —0.63 < :13 < 0.63. 1 —4 f’(:1:) : ;4(1 + 2e)*5(2) : £55 so f(0) : land f’(0) = —8. Thus. ﬂat) z f(0) + f'(0)(x — 0) : 1 + (43w; f 0) = 1 — 89:. We need 1/(1 + 23:)4 — 0.1 < 1 — 89: < 1/(1 + 2x)4 + 0.1. which is true 70.08 when 70.045 < a: < 0.055. 14. f(m) : 6“” => f’(a:) : e\$.so f(0) : 1 and f'(0) : 1. Thus. f(1:) % f(0) + f'(0)(:c 7 0) : 1 + 1(;v — 0) : 1 +m. We need e35 e 0.1 < 1 + :r < eI + 0.1. which is true when —0.483 < m < 0.416. 15. Ify : f(:c). then the differential dy is equal to f'(0v) dm. y = :04 + 555 => dy : (4303 + 5) dm. 16. y : cosmv => dy : —sin7r;c - TFdIII : #Trsinnmdm 17_ y:g;1nm :> dy: <w~\$+lnav1> dm:(1+ln:c)da: 18.y:1/1+t2 :. dy:%(1+t2)_1/2(2t)dt: 1+t2dt u+1 (u—1)(1)—(u+1)(1) ‘2 g . 7 ————d 19. y— u- 1 dy (11.? DZ du (u~ 1)2 u 20. y z (1 + 2W4 : dy : ;4(1 + 2W5 ~2dr : —8(1 + 2r)’5 (17‘ 21. (a)y:\$2+2m :> dy: (2x+2)d:z: (b) When a: z 3 and due : g. dy : [2(3) + 21%): 4. 22. (a) y : (BI/4 => dy : iem/4dm (b) When in : 0 and dm : 0.1. dy : (§e°)(0.1): 0.025. ...
View Full Document

{[ snackBarMessage ]}