{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter 4 6

# Chapter 4 6 - 268 43 45 47 49 50 51 52 53 54 CHAPTER 4...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: /, 268 43. 45. 47. 49. 50. 51. 52. 53. 54. CHAPTER 4 APPLICATIONS OF DIFFERENTIATION f(0) = 2cos€+sin26 => f'(0) 2 22sin6+2sin90080. yf’(6) 2 0 2 25i119(cos0 2 1) 2 0 => sinﬁ 2 0 or c050 2 1 => 9 2 mr (ii an integer) or 0 2 27m. The solutions 6 2 mt include the solutions 0 2 27m. so the critical numbers are 0 2 mr. .g(6)240—tan9 => g'(9)242sec20. g’(0)20 => sec2624 => 5e002i2 2 c030 2 i—% 2 6 2 g + 27m. 5?" + 21m. 2?" + 27177. and 47" + 27m are critical numbers. Note: The values of 6 that make g’(0) undeﬁned are not in the domain of g. f(\$)2arlnx 2> f'(x)2x(1/m)+(lnac)-12lnm+1. f'(av)20 42> lnx2—1 <:> as 2 e‘1 2 1/6. Therefore. the only critical number is a: 2 1/6. f(m) 2 3062“” 2> f’(:v) 2 m(262\$) + e21 2 e2m(2x —I— 1). Since 621 is never 0. we have f’(:z:) 2 0 only when 2:5 + 1 2 0 <:> a: 2 2%. So 2% is the only Critical number. ﬁns) 2 331:2 2 12:16 + 5. [0.3]. f’(ac) 2 6x — 12 2 0 2) a: 2 2. Applying the Closed Interval Method. we ﬁnd that f(0) 2 5. f(2) 2 27. and f(3) 2 24. So f(0) 2 5 is the absolute maximum value and f(2) 2 27 is the absolute minimum value. f(a:) 2 \$3 2 33: + 1, [0,3]. f’(a:) 2 3:102 2 3 2 0 42) m 2 :1, but 21 is not in [0.3]. f(0) 2 1. f(1) 2 21. and f(3) 2 19. So f(3) 2 19 is the absolute maximum value and f(1) 2 21 is the absolute minimum value. f(;v) : 2353 - 318 — 12x + 1. [22,3]. f’(a:) = 6x2 _ 61: — 12 = 60:2 — x — 2) : 6(x — 2)(cc + 1) = 0 42> x 2 2. 21. f(—2) 2 23. f(—1) 2 8. f(2) 2 219. and f(3) 2 28. So f(21) 2 8 is the absolute maximum value and f (2) 2 219 is the absolute minimum value. f(:l3) : m3 — 63:2 + 9m + 2. [—1.4]. f’(m) : 39:2 — 12\$ + 9 : 3(m2 — 43: + 3) : 3(z 21x9: — 3) : 0 4:» :c 2 1.3. f(21) 2 214. f(1) 2 6. f(3) 2 2, and f(4) 2 6. So f(1) 2 f(4) 2 6 is the absolute maximum value and f(21) 2 214 is the absolute minimum value. f(x) 2 \$4 2 2362 +3. [22.3]. f'(x) 2 4m3 24\$ 2 4m(\$2 2 1) 2 4\$(a:+ 1)(a: 2 1) 2 0 <=> w 2 21,0,1. f(—2) — 11. f( 1) 2. f(0) 3. f(1) 2. f(3) 66. So f(3) 2 66 is the absolute maximum value and f(::1) 2 2 is the absolute minimum value. f(:n) 2 (:52 — 1)3. [21,2]. f'(:r) 2 3(m2 2 1).2(2m) 2 6M1: + 1)2 (m 2 1)2 2 0 (2) m 2 21,0,1. f(::1) 2 O. f(0) 2 21. and f(2) 2 27. So f(2) 2 27 is the absolute maximum value and f(0) 2 21 is the absolute minimum value. 2 g _ 2 (1? +1) I(Zm)2 1 m —0 <—‘> x2:I:1.but21isnotin[0,2]. W) : (m2 + 1)2 _ (\$2 + 1)2 f(0) 2 0. f(1) 2 l f(2) 2 %. So f(1) 2 % is the absolute maximum value and f(0) 2 0 is the absolute 2. (I: x2+1’ [0121- f'(\$) 2 minimum value. \$2 — 4 (.732 + 4)(2a:) — (\$2 2 4)(2m) _ 16:1: ft”) : (1)2 +4~ [—4941' f,(33) * (\$2+4)2 (\$2+4)2 " 0 * 1: — 0. f(j:4) 2 :—§ 2 g and f(0) 2 21. So f(j:4) 2 g is the absolute maximum value and f(0) 2 21 is the absolute minimum value. ...
View Full Document

{[ snackBarMessage ]}