{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter 4 31

# Chapter 4 31 - SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH 293 (c) No minimum or maximum (6) (a) f”(m) = (1w ( m2+1)2 2 2 1/2 13 1 _ (a: + ) (m2+1)1/2 _ (m2+1)—m2 _ \$2+1 _ (x2+1)3/z 2721—)3/2 >0.sofisCUoan.NoIP a: +1 48. (a) 11m xtanm : ooand li1r1/2+:ctanm : 00, sex 2 g andcc : 7% are VA. 33"” 2— z—>—7r (b) f(ac) : actanm. 7% < ac < % f'(\$) =mseczm+tanm > 0 (e) (i) 0 < :c < g. so f increases on (0, g) and decreases on (—Tr (1)1 51 (c) f(0) : 0 is a local minimum value. (d) f”(m) :2sec2x+2:c tanx seczw > 0f0r—g < x < §.sofis CUon (—§,g). NoIP 49. ﬁx) : 1n(1 — In x) is deﬁned when ac > 0 (so that lnm is deﬁned) and 1 i Ina: > 0 [so that 1n(1 7 1n ac) is deﬁned]. The second condition is equivalent to 1 > lna: 4:) :r < 6, so f has domain (0, e) . (a) As at —> 0+7 lnm —» —oo., so 1 — lnap~> 00 and ﬂat) —> 00. As a: —> e’, lnrc ——> 1‘, so 1 — 1113: —> 0+ and f (av) —> —00. Thus. at = 0 and a: : e are vertical asymptotes. There is no horizontal asymptote. b l/ —— — — — _ __ . . ~ t . . ‘ . ' ( ) (CC) 1 1 ( > (1 l ) < 0 on (0, 6) Thus l lS decreasmg on IIS domaln (0 6) (c) f’(m) 95 0 on (0. e) . so f has no local maximum or minimum value. — [1(1 — lncc)]/ : :c(~1/m) + (1 — lnac) [2:(1 —111\$)]2 1122(1 — 11131:)2 (d) f"(\$) — 11130 \$20 — lnaic)2 SOfH(\$)>0 4:} Incc<0 <:> 0<\$<1.Thus,fisCUon (0.1) and CD on (1, e) . There is an inﬂection point at (17 0) . I 50. f(m) : 1 :em has domain R. (a)1lirr:of(x) = Ill—{130\$ — \$1330 87ng 1 _ 0:1 _ 1. soy _ 1 isaHA. 1213100ﬂm): mlir_n00 1::x : r00 : 0. so y 2 0 is a HA. No VA. (b) f/(m) = W : ﬂ > O for all :10. Thus, f is increasing on R. ...
View Full Document

{[ snackBarMessage ]}