{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter 4 42

# Chapter 4 42 - 304 CHAPTER 4 APPLICATIONS OF...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 304 CHAPTER 4 APPLICATIONS OF DIFFERENTIATION 2 . 2 . :c H . 2\$ H . 2 . 38. 11111 w 6”” : 11m , : 11m : 11m : 11m 262 = O at—r-—oo (t—r—OO €_‘E z—+~oo —e_z 2—9700 e—z m—>-—oo 39. This limit has the form 00 - 0. Well change it to the form 9 0. lim cot 2m sin 6:1:— - liin 5111030 5 lim ()cos 65:: 6(1) — 3 z—m m—»0 taan x—rO 2sec2 21* _2(1)2 40. lim sinxlnm = lim 111\$ g lim —1/\$—— : — lim (smut ~tan\$> z—>O+ xﬁo+ cscrc 1—.0+ —cscxcota: I_.o+ a: . sinx . :#(hm ><11m tan\$)=71-0:0 IHO‘I' 13 1—»0+ 3 2 41. This limit has the formoo~0. lim 3036’”2 = lim E—Z 2 lim 3m ' lim 3m 2 lim z—mo z—voo ex z—voo 2.7369” race 262 EH00 4:136“E 42. lim/4(1 — tan m) seem : (1 — 1) x/i : O. L’Hospital’s Rule does not apply. 43. This limit has the form 0 - (700) In]: H . 1/56 1 2 1 l t 2 l ———— = l = 2 131+ “x “(”7 I: 131+ c0 t(7r;v/2) 1311+ (—71/2) csc2(7rw/2) (—1/2)(1)2 7r t 1 1 1 2 44. Ill—Ergo xtan(1/m) : 111—1130 EHTI/mlml 2 \$1320 W # \$13130 sec 2(1/;3) — 12: 1 1 ' , 45. lim (l —csc;c> : lim (1 — _ >: lim w m—>0 :3 z—>0 a: smcc cc—>0 msina: cosy: # 1 — sinzz: 0 :lim—————-:lim————.——:—:0 xa0xcosm+sinm 2—»02cosweccsinac 2 =0 — lim :c—>0 sinac zao cosm 46. lim (csc cc A cot w)— — 11m < 1 cosm . 1* cosm 1-1 sinzv : 11m ————— m—>O z—>0 sin m sin 30 47. We will multiply and divide by the conjugate of the expression to change the form of the expression. x/mQ—l—mea: \/\$2+m+:> (3:2 +w) m2 - /2 _ :1‘ __———.———— :li 1131;0( m +\$ \$) 1LH;O( 1 ‘/.’II2+\$+\$ angoT———/\$2+\$+: 1 — lim——-——— — —lim———— —. m—wo x/m2+m+m woo ‘/1+1/a:+1:f1:+1 2 As an alternate solution. write \/ 2:2 —l— as 1 w as \/ 2:2 + a: ! sz , factor out V\$ . 2rewrite as (\/ 1 + 1/1: — 1)/(1/\$). and apply l'Hospital’s Rule. 481‘ 1 1 *l' w-l—lnwﬂhm 1-1/13 .E 11311 lnxim—l _zl—»ml (cc!1)lnm Tz->1(m—1)(1/\$)+lnac at \$71 1 1 [Oh-1 _ :1 ______ ____: iiinlm—l—Fqﬂnx 11—»mll+1+lnx: 2+0 49. The limit has the form 00 — 00 and we will change the form to a product by factoring out w. 1 . , 1 1 2: lim (1: ~ 111x) : 11m 31(1 7 _n:n> : oosmce 11m __na: 2 11m — :0. z—>oo EH00 a) I—NDO :12 (E—NDO 1 ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern