{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter 4 96

# Chapter 4 96 - 358[3 CHAPTER4 APPLICATIONS OF...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 358 [3 CHAPTER4 APPLICATIONS OF DIFFERENTIATION 9. 10. 11. 12. 13. 14. my = 1.5 x 106. so y = 1.5 X 106/37. Minimize the amount of fencing. which is 3s + 2y = 3x + 2(1.5 X 10%) = 37; + 3 x 106/2: : Fm). F’(m) = 3 — 3 x 106/37:2 2 3(102 — 106) /ac2. The critical number is x :103 and F'(w) < 0for0 < x < 103 and F’(:c) > 0 ifm > 103. so the absolute minimum occurs when x = 103 and y = 1.5 X 103. The ﬁeld should be 1000 feet by 1500 feet with the middle fence parallel to the short side of the ﬁeld. Let b be the length of the base of the box and h the height. The volume is 32.000 : bzh => h = 32.000/b2. The surface area of the open box is S : b2 + 4hb = b2 + 4(32.000/b2)b : b2 + 4(32.000)/b. So S’(b) : 2b — 4(32,000)/b2 : 2(b3 — 64000) /b2 : 0 4:» b : W : 40. This gives an absolute minimum since S’(b) < 0 ifO < b < 40 and S'(b) > 0 ifb > 40. The box should be 40 X 40 X 20. Let b be the length of the base of the box and h the height. The surface area is 1200 = 02 + 4hb => h : (1200 — b2)/(4b). The volume is V 2 02h : b2(1200 , b2)/4b : 300b , 123/4 :> V’(b) = 300 — 3b? V’(b) 0 300 g1)? ? b2 400 0 Wm 20. Since V’(b) > 0 for 0 < b < 20 and V’(b) < 0 for b > 20. there is an absolute maximum when b : 20 by the First Derivative Test for Absolute Extreme Values (see page 334). If I) = 20. then It : (1200 — 202)/(4 - 20) = 10. so the largest possible volume is b2h : (20)2(10) : 4000 cm3. - V : lwh => 10 : (2w)(w)h : 2w2h. so It : 5/1112. The COSt is 10(21122) + 6[2(2wh) + 2(hw)] : 20w2 + 36wh. so C(w) : 20w2 + 36w(5/w2) : 20w2 + 180/11). 2w C'(w) : 40w 7 180/11)2 2 40 (103 7 gym? :> w : f/gis the critical number. There is an absolute minimum for C when w : i/g since C'(w) < 0 for 0 < w < {/E and C(20) >0forw> {E OWE) :20(§/§)2+ £0? m\$163.54. - 10 : (2w)(w)h : 2102b. so h : 5/102. The cost is C(w) = 10(2w2) + 6[2(2wh) + 2hw] + 6(2w2) w : 32w2 + 36wh : 32w2 + 180/212 2w C'(w) : 64w — 180/102 : 4 (167.03 7 45)/w2 2 w : ,3/i11—g is the critical number. C'(w) < 0 for 0 < w < 3 \$5; and C’(w) > 0 form > 3 %. The minimum cost is C( 3 ﬁ) : 32(2.8125)2/3 +180/x/2.8125 % \$191.28. (a) Let the rectangle have sides m and y and area A. so A : any or y : A/m. The problem is to minimize the perimeter : 2:5 + 23; : 23: + 2A/m : P(a:). Now P'(m) : 2 — 214/232 : 2(cc2 — A) /a:2. So the critical number is m : x/Z. Since P'(w) < 0 for 0 < at < ﬂ and P'(;c) > 0 for at > x/Z there is an absolute minimum at m : x/Z The sides of the rectangle are x/Z and A/x/Z : x/A7 so the rectangle is a square. (b) Let p be the perimeter and a: and y the lengths of the sides. so 1) : 2x + 2y :> 2y : p — 2m => y : ép— 3:. The area is 14(30): \$619 — \$) : %p\$ — \$2. Now A'(1:) : 0 => %p — 2a: : 0 => ...
View Full Document

{[ snackBarMessage ]}