{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter 4 163

# Chapter 4 163 - 10 11 12 CHAPTER 4 PROBLEMS PLUS 425 After...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 10. 11. 12. CHAPTER 4 PROBLEMS PLUS 425 After expanding and canceling terms, we get ﬂat) 2 are”? — x1173 — 1333112 + mlxz — \$2332 + (mg) 2 ﬂatﬂm * x) + \$301: — \$1) + 372(x1 — m2)] f’(:v) f’(:z:) = 0 => 2\$(w1 — x2) : as? — mg => asp = %(\$1 +\$2)- l 7m? + x3 + 2m(m1 — m2)]. f”(at) = %[2(w1 — 1:2)l : m1 — 372 < 0 since 232 > 131‘ 2 ll WP) = arc? l%(w2 — \$01)] +m§ [an — 331)] + ﬂan +£2)2(\$1 — 352)) = % B062 - \$1)(fvi + \$3) — ﬂan ~ mm + 952?] : £062 — 031M200? + m3) — (as? + 2mm + 3%)] : a“ ”W? -2m2 +26%) = m w mm m)? : gm mm my Zita 79603 To put this in terms ofm and b, we solve the system 3; = 17% and y : man + 1). giving us an? — mml — b : O :> 2:1 : %(m — x/m2—+4b). Similarly, m2 2 %(m + VHF—+411). The area is then an — m1)3 2 am)?’ and is attained at the point P(mp,\$§j) : P(%m, inf). Note: Another way to get an expression for f (ac) is to use the formula for an area of a triangle in terms of the coordinates ofthe vertices: f(m) : %[(m2m§ * 331333) + (3mm2 v 323:?) + (\$533 — 502562)]. If f”(a:) > 0 for all :17, then f’ is increasing on (—00, 00), so f’(0) must be greater than f’(71). But f’(0) = 0 < % = f'(—1). so such a function cannot exist. f(.1’) : (a2 + a i 6) c0822: + (a — 2):r —l— cosl => f’(\$) : — (a2 +a — 6) sin2m (2) + (a — 2). The derivative exists for all :3, so the only possible critical points will occur where f’(m) : 0 4:) 2(a — 2)(a + 3) sin 2:1: : a — 2 (1) either a = 2 or 2(a + 3) sin 23: : 1. with the latter implying that 1 sin 23: : m Since the range of sin 2:5 is [—1, 1]. this equation has no solution whenever either a. 1 1 . A . t 7 5 m < —1 or m > 1. Solv1ng thCSC mequalltles. We get *5 < (l < *5. To sketch the region {(\$31) | 2mg 3 Ian — yl g \$2 + 3/2}, we consider two cases. Case I: a: 2 y This is the case in which (:0, y) lies on or below the line y : m. The double inequality becomes 2mg 3 x ~ 3/ g m2 + 312. The right—hand inequality holds if and only if \$2 — a; —|— y2 + y 2 O {i} (m — %)2 + (y + %)2 Z % <:> (w, y) lies on or outside the Circle with radius % centered at G, —%). ...
View Full Document

{[ snackBarMessage ]}