{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter 5 4

# Chapter 5 4 - 436 D CHAPTERS INTEGRALS 6(a 2 —1(b f(\$ =...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 436 D CHAPTERS INTEGRALS 6. (a) 2 —1 (b) f(\$) = 6—12 and Ann : ﬂ)— : 1 => (1) R4 : 1-f(*1)+1~f(0) (ii) M4 : 1 . f(—1.5) + 1 . f(—0.5) +1 - N) + 1~f(2) +1 - f(0.5) +1 - f(1.5) : 6—1 +1 +e—1 +e—4 : €72.25 +€~025 +e—Or25 +6—2.25 x 1.754 m 1.768 (c) (1)138 : 0-5[f(—1-5) + f(—1)+ f(*0-5) + M) + f(0-5) + N) + Nb) + f(2)] : 6—2.25 +671 +e—O.25 + 1 +6425 +e—1 +6425 +6 :1 1.761 (ii) Due to the symmetry of the ﬁgure. we see that Ms : (0.5)(2)[f(0.25) + f(0.75) + f(1.25) + f(1.75)] : 670.0625 +e—O.5625 +e—l,5625 +63.0625 % 1.766 7. Here is one possible algorithm (ordered sequence of operations) for calculating the sums: 1 Let SUM : 0. XiMIN : 0. X_MAX : 7r. N : 10 (or 30 or 50, depending on which sum we are calculating), DELTA7X = (XgMAX — XﬁMIN) / N, and RIGHT_ENDPOINT : X_MIN + DELTA_X. 2 Repeat steps 2a. 2b in sequence until RIGHT_ENDPOINT > X_MAX. 2a Add sin (RIGHTVENDPOINT) to SUM. 2b Add DELTAiX to RIGHT_ENDPOINT. ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online