2009.02.16-ECE659-L15-notes

# 2009.02.16-ECE659-L15-notes - ECE 659 Quantum Transport...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ECE 659 Quantum Transport: Atom Atom to Transistor Lecture 15: Coherent Transport II Supriyo Datta Spring 2009 Notes prepared by Samiran Ganguly Σ = Σ1 + Σ 2 Γ = i Σ − Σ + G = [ EI − H − Σ ] −1 Σ1 Σ2 A = i G − G + G n = GΓ1G + f1 + GΓ 2G + f 2 q I i = Trace [ Γi A] fi − Γi G n h µ1 H µ2 ( ) E E = ε − 2t cos ka Aeikx + ρ e− ikx τ eikx µ1 0 ε 1 Eψ 1 = εψ 1 − tψ 2 − tψ 0 ka t a 2 3 µ2 Eψ 2 = εψ 2 − tψ 1 − tψ 3 ψ 2 = τ eik 2 a ψ 3 = τ eik 3a ψ 3 = ψ 2 eika Σ1 H Σ2 ψ0 = A+ ρ ψ 1 = Ae + ρ e ika ika − ika 2 ika s1 = −tA (1 − e2ika ) ∴ψ 0 = e ψ 1 + A (1 − e ) = tAeika ( e + ika − e− ika ) 2 2 The second term can be thought of as a source term [ EI − H − Σ]ψ = s Eψ 1 = εψ 1 − tψ 2 − t eikaψ 1 + A (1 − e2ika ) Eψ 2 = −tψ 1 + εψ 2 − tψ 2 eika ψ 1 ε −t ψ 1 −teika E = + ψ 2 −t ε ψ 2 0 −tA (1 − e2ika ) + 0 0 ψ 1 −teika ψ 2 s1 = A ( 2t sin ka ) 2 ( ) E ( k ) = ε − 2t cos ka ℏv ( k ) = s1 2 dE = 2ta sin ka dk 2 2 ℏv =A a Aeikx −te Σ1 = 0 ika 0 0 0 0 Σ2 = ika 0 −te A = dE 2 D(E) f1 ( E ) 2 E dE L 2π L k dk L = dE 2π dE 2π L dk ℏv s1 = 2 dE ℏv f1 ( E ) 2π a Γ1 = i ( −teika + te − ika ) = 2t sin ka ℏv = a Σ1 = −teika a A = dEf1 ( E ) 2π ℏv 2 ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 4

2009.02.16-ECE659-L15-notes - ECE 659 Quantum Transport...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online