M305_Tables - P. «D- STANDARD NORMAL DISTRIBUTION...

Info iconThis preview shows pages 1–12. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: P. «D- STANDARD NORMAL DISTRIBUTION " Area or probability Entries in the table give the area under the curve between the mean and 2 Stan- dard deviations above the mean. For example, for z = 1.25 the area under the curve between the mean—and z is .3944. z .00 .01 .02 .03 .04 .05 .00 .07 .03 .09 .0 .0000 .0040 .0030 .0120 .0100 2.0199 .0239 .0279 .0319 .0359 .1 .0393 .0433 .0473 .0517 .0557 .0590 .0030 .0075 .0714 .0753 .2 .0793 .0332 .0371 .0910 .0943 .0937 .1020 .1004 .1103 .1141 .3 .1179 .1217 .1255 .1293 .1331 1303 .1400 .1443 .1430 .1517 .4 -1554 -1591 . .1023 .1004 .1700 1730 .1772 .1303 .1344 .1379 .5 .1915 .1950. .1935 .2019 .2054 .2033 .2123 .2157 .2190 .2224 .0 -. . .2257 .2291 .2324 .2357 .2339 .2422 .2454 _.2430 _.2513 .2549. .7 .2530 .2012 .2042 .2073 ' .2704 2734 .2704 .2794 .2323 .2352 .3 .2331 .2910 .2939 .2907 .2995 3023 .3051 .3073 1 .3100 .3133 ' .9- .3159 .3130 . .3212 .3233 .3204 3239 .3315 .3340 .3305 .3339 1.0 .3413 ' .3433 .3401 .3435 .3503 .3531 .3554 .3577 .3599 .3021 1.1 -3043 .3005 .3030 .3703 .3729 .3749 .3770 .3790 .3310 .3330 1.2 .3349 _ .3309 .3333 .3907 .3925 .3944 .3902 .3930 .3997 7 .4015 1.3 .4032 __.4049. .4000 .4032 .4099 2.4115 .4131 .4147. .4102 .4177 1.4 .4192 .4207 .4222 .4230 ‘.4251 7 4205 . "14279 .4292 .4300 . .4319 1.5 .4332 .4345 .4357 .4370 .4332 .4394 .4400 _.4413 .4429 . .4441 1.0 .4452 .4403 .4474 .4434 31495 .4505 .4515 .4525 .4535 .4545 1.7 .4554 .4504 .4573” .4532 -4591 .4599 .4008 .4010 .4025 .4033 1.3 .4041 .4049 .4050 .4004 .4071 .4073 .4030 .4093 .4099 .4700 1.9 .4713 .4719 .4720 .4732 .4733 .4744 .4750 .4750 .4701 .4707 2.0 .4772 .4773 .4733 .4733 .4793 .4793 .4303 .4303 .4312 .4317 2.1 .4321 .4320 .4330 .4334 .4333 .4342 .4340 .4350 .4354 .4357 2.2 _ .4301 .4304 .4303 .4371 .4375 .4373 .4331 -4334 .4337 .4390 2.3 .4393 .4390 .4393 .4901 .4904 .4900 .4909 .491 1 .4913 .4910 .4913 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 4930 2.5 .4933 .4940 .4941 .4943 .4945 -4940 .4943 ' .4949 .4951 .4952 2.0 .4953 .4955 .4950 .4957 .4959 .4900 .4901 .4902 .4903 .4904 2.7 .4905 .4900 .4907 .4903 .4909 .4970 .4971 .4972 .4973 .4974 - 2.3 .4974 .4975 .4970 .4977 .4977 .4973 .4979 .4979 .4930 .4931 2.9 .4931 .4932 .4932 - .4933 -.4934 .4934 .4935 .4935 .4930 .4930 3.0 .4930 .4937 .4937 .4933 .4933 .4939 .4939 .4939 . .4990 .4990 .WF CUMMTIVE PROBABH-I'I'IES FOR THE STANDARD NORMAL DISTRIBUTION Enuies in this cable give the area under the - _ curve to the left of the 01mm?“ 35: 1 Value. For example, for pmbabllxty .- -'-' z = .35, the cumulative probability is .1977. z 0 _’__________.__._._._.-_—m—— z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .—3-0 .0013 .0013 .0013 .0012 .0012 .0011‘ .0011 .0011 .0010 .0010 -—2.9 .0019 .0018 .0018 .0017 . .0016 .0016 .0015 .0015 .0014 .0014 '"2.8 .0026 .0025 .0024 ' .0023 .0023 .0022 .0021 .0021 .0020 .0019 3-2-7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026 82.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036 -25- .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 _ .0049 .0048 -2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 ' .0068 .0066 10064 —2.3 .0107 .0104 I .0102, .0099 .0096 .0094 .0091 .0089 .0087 .0084 —2-2 .0139 .0136 .0132 .0129' .0125' .0122 .0119 ' .0116 .0113 .0110 "-2.1 .0179' .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143 -2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183 ' —l.9 ".0287 .0281 .0274 : .0268 .0262 10256 *‘ .0250 .0244 .0239 .0233 ' "1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294 -l.7 ‘ ' .0446 .0436 .0427 .0418 .0409 .0401 .0392 ' .0384 :0375 .0367 -1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455 "1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 '.0559 - 1.4 .0808 .0793 r .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681 — 1.3 , .0968 .095 l .0934 .0918 .0901 .0885 -0869 .0853 .0838 .0823 - 1.2 .1151 .1131 .1112 .1093 .1075 -1056 -1038 .1020 .1003 .0985 - 1.1 .1357 .1335 .1314 .1292 -1271 .1251 .1230 .1210 .1190 .1170 - 1.0 ~ .1587 -1562 -1539 .1515 .1492 .1469 .1446 .1423 .1401 ' .1379 -.9 .1841 .1814 -1788 .1762 -1736 .1711 -1685 .1660 .1635 .1611 —.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867 -.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148 -.6 .2743 .2709 .2676 .2643 .2611 .2578 ‘ .2546 .2514 .2483 .2451 “.5 -3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776 ".4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 -3156 .3121 --3 .3821 -3783 .3745 -3707 .3669 -3632 .3594 .3557 .3520 .3483 - .2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 -3859 —-I .4602 .4562 .4522 4483 .4443 4404 .4364 .4325 .4286 .4247 —0 .5000 4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641 1 1 1 i I 1 1 ‘ 1 a a 1 i 1 i 7 i s x § 3 1 i i i i . I | l I I I I | i i . FOR THE STANDARD NORMAL DISTRIBUTION Cumuiative _ . probability 599163 “‘ me “we give the area under the curve to the left ofthe - r 2 value. For example, for z = 1.25. the cumulative probability is .8944. z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .0 5000 .5040 5030 5120 .5160 .5199 .5239 5279 5319 5359 .1 5393 .5433 5473 .5517 .5557 .5596 5636 5675 .5714 .5753 .2 5793 5332 5371 5910 .5943 .5937 .6026 .6064 .6103 .6141 .3 .6179 .6217 .6255 .6293 .6331 .6363 .6406 .6443 .6430 .6517 .4 .6554 .6591 .6623 .6664 .6700 .6736 .6772 .6303 .6344 .6379 .5 .6915 .6950 .6935 .7019 .7054 .7033 .7123 .7157 .7190 .7224 .6 .7257 .7291 .7324 .7357 .7339 .7422 .7454 .7436 .7517 .7549 .7 .7530 .7611 ' .7642 .7673 .7704 .7734 .7764 .7794 .7323 .7352 .3 .7331 .7910 .7939 .7967 .7995 .3023 .3051 .3073 .3106 .3133 f9 .3159 .3136 .3212 .3233 .3264 .3239 .3315 .3340 .3365 .3339 1.0 .3413 .3433 .3461 .3435 .3503 .3531 .3554 .3577 .3599 .3621 1.1 .3643 .3665 _ .3636 - .3703 -3729 .3749 .3770 -3790 .3310 .3330 1.2 __.3_349_ ".3369 .3333 .3907 .3925 .3944 .3962 .3930 .3997 .9015 I3 9032 .9049 9066 .9032 r 9099 .9115 .9131 .9147 .9162 .9177 ,"1.4 H .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 ‘ 1.7 .9554 .9564 .9573 .9582 _.9591 .9599 .9608 .9616 .9625 .9633 1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 _ .9693 .9699 .9706 1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 2.1 1.9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 2.3 .9893 .9896 .9898 ‘ .9901 .9904 .9906 .9909 .9911 .9913 .9916 2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 2.9 .9981 .9982 .9982 .9983 ' .9984 .9984 .9985 , .9985 .9986 .9986 3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 ______________—______._..____.______._.._— 3 3 3 i 1 1 1 7 1 1 1 E E 1 i i i E E 1 1 E g E E E 1 E g E E E 1 1 AppendixB Mes ME 5 BINOMIAL PROBABILITIES 989 Enuies in the table: give the probability of x successes in 71 11-1218 of a binomial experiment, where p is the probability of a success 013 one trial- For example. withrsix trials and p = .05, the probability 0f two successes is .0305. m__.__.__._{’___.._.____._._... n .t .01 .02 .03 .04 .05 .06 .07 .08 .09 M 2 0 .9801 .9604 .9409 .9216 .903 - .8836 .8649 .8464 .8281 1 .0198 .0392 .0582 .0768 .0950 .1128 .1302 .1472 .1638 2 .0001 0004 .0009 .0016 .0025 .0036 .0049 .0064 .0081 3 0 .9703 .9412 .9127 .8847 .8574 .8306 .8044 .7787 .7536 1 .0294 0576 .0847 .1106 .1354 .1590 .1816 .2031 .2236 2 .0003 0012 .0026 .0046 .0071 .0102 .0137 .0177 .0221 3 .0000 0000 .0000 .0001 0001 .0002 .0003 .0005 .0007 4 0 .9606 .9224 .8853 .8493 .8145 .7807 .7481 .7164 .6857 1 .0388 .0753 .1095 .1416 .1715 -1993 .2252 .2492 2713 2 .0006 .0073 .0051 .0088 .0135 .0191 .0254 .0325 .0402 3 . .0000 .0000 .0001 .0002 .0005 .0008 .0013 .0019 .0027 4 .0000 0000 .0000 .0000 .0000 0000 .0000 .0000 .0001 -5 0 .9510 .9039 .8587 8154 .7738 .7339 .6957 .6591_ . .6240 1 .0480 .0922 .1328 .1699 .2036 .2342 .2618 .2866 3086 2 .0010 .0038 .0082 .0142 .0214 .0299 - .0394 .0498 .0610 ' 3 .0000 '.0001 .0003 .0006 .0011 .0019 .0030 .0043 .0060 . 4 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002 ' .0003 '6 0 .9415 .8858 .8330 - .7828 .7351 .6899 .6470 .6064 .5679 ‘ 1 .0571 .1085 .1546 .1957 .2321 .2642 2922 .3164 3370 2 .0014 .0055 .0120 .0204 .0305 .0422 .0550 .0688 .0833 3 .0000 .0002 - .0005 .0011 .0021 .0036 .0055, .0080 .0110 '4 .0000 .0000 r .0000 .0000 .0001 .0002 .0003 .0005 .0008 6 .0000 .0000 .0000 .0000 .0000 0000 .0000 .0000 .0000 7 0 .9321 .8681 .8080 .7514 .6983 .6485 .6017 5578 5168 ' 1 .0659 .1240 .1749 - 2192 .2573 2897 .3170 .3396 3578 2 .0020 .0076 .0162 .0274 .0406 .0555 .0716 .0886 .1061 3 .0000 .0003 .0008 .0019 .0036 .0059 .0090 .0128 .0175 4 .0000 0000 .0000 .0001 0002 .0004 .0007 .0011 .0017 5 .0000 0000 .0000 .0000 .0000 0000 .0000 .0001 .0001 6 .0000 .0000 .0000 .0000 .0000 0000 .0000 .0000 .0000 8 ' 0 .9227 .8508 .7837 .7214 .6634 .6096 .5596 .5132 .4703 1 .0746 .1389 .1939 .2405 2793 -3113 3370 .3570 .3721 2 .0026 .0099 .0210 .0351 .0515 .0695 .0888 .1087 ' .1288 3- .0001 .0004 .0013 .0029 .0054 .0089 .0134 .0189 .0055 4 .0000 0000 ' .0001 .0002 .0004 .0007 .0013 .0021 .0031 5 .0000 0000 .0000 .0000 0000 .0000 .0001 .0001 .0002 6' .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 8 .0000 0000 .0000 .0000 .0000 0000 .0000 .0000 .0000 E E 1 E E ‘1 ‘E 1 i 1 1 E 1 § 1 E E AppendixB Tabla‘ TABLE 5 BINOMAL PROBABILITIES (Continued). P n x .01 .02 .03 .04 .05 .06 .07 .03 39 9 0 .9135 -3337 .7602 .6925 .6302 5730 5204 .4722 4279 1 .0330 .1531 2116 2597 2935 3292 3525 .3695 3309 2 .0034 .0125 .0262 .0433 .0629 .0340 .1061 .1235 .1507 7 3 .0001 .0006 .0019 .0042 .0077 .0125 .0136 .0261 .9343 4 .0000 .0000 .0001 .0003 .0006 .0012 .0021 .0034 m5; 5 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0065 6 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .6090 9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 10 0 -9044 -3171 .7374 .6643 5937 5336 .4340 .4344 31194 1 .0914 .1667 2231 -2770 .3151 .3433 3643 3777 .3351 2 .0042 .0153 .0317 .0519 .0746 .0933 .1234 .1473 .1714 3 .0001 .0003 .0026 .0053 .0105 .0163 .0243 .0343 .0452 4 .0000 .0000 .0001 .0004 .0010 .0019 .0033 .0052 .0073 5 .0000 .0000 .0000 .0000 .0001 .0001 .0003 .0005 .0009 6 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 9 .0000 .0000 .0000 .0000 .0000 _ '.0000 .0000 .0000 .0000 10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 12 0 .3364 .7347 .6933 .6127 .5404 .4759 .4136. .3677 3225 1 - .1074 .1922 2575 .3064 3413 .3645 .3731 3337 3327 . . 2 .0060 .0216 .0433 .0702 .0933 .1230 .1565 -1335 .2032 3 .0002 .0015 .0045 .0093 .0173 .0272 .0393 .0532 .0636 4 .0000 .0001 .0003 .0009 - .0021 .0039 .0067 .0104 .0153 5 .0000 .0000 .0000 .0001 10002 .0004 .0003 .0014 .0024 6 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0003 9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000. 10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 11 .0000 .0000 .0000 .0000 .0000 7.0000 .0000 .0000 .0000 12 .0000 .0000 .0000 .0000 10000 .0000 .0000 .0000 .0000 15 0 .3601 .7336 .6333 . .5421 .4633 3953 3367 2363 2430 1 .1303 2261 2933 3333 3653 . 3735‘ 3301 3734 3605 2 .0092 .0323 .0636 .0933 .1343 .1691 2003 2273 .2496 3 .0004 .0029 .0035 .0173 .0307 .0463 .0653 .0357 .1070 4 .0000 .0002 .0003 .0022 .0049 .0090 .0143 .0223 .0311 5 .0000 .0000 .0001 .0002 .0006 .0013 .0024 .0043 .0069 6 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0006 .001! 7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000. .0000 - 11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 14 .0000 .0000 .0000 .0000 .0000 0000 .0000 .0000 0000 15 .0000 .0000 .0000 .0000 .0000 0000 0000 .0000 0000 AppendixB Tables TABLE 5 BINONHAL PROBABILITIES (Continued) u x .01 .02 .03 .04 .05 .06 .07 .03 .09 W 18 0 .8345 .6951 3780 .4796 3972 3283 .2708 .2229 .1331 1 .1517 .2554 .3217 3597 3763 .3772 3669 3489 3260 2 .0130 .0443 .0846 .1274 -1683 .2047 .2348 2579 .2741 3 .0007 .0048 .0140 .0283 .0473 .0697 .0942 .1196 .1446 4 .0000 .0004 .0016 .0044 .0093 .0167 .0266 .0390 .0536 5 .0000 .0000 .0001 .0005 .0014 .0030 .0056 .0095 .0148 6 .0000 .0000 .0000 .0000 .0002 .0004 .0009 .0018 .0032 7 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0005 8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 11 .0000 .0000 - .0000 .0000 .0000 .0000 .0000 .0000 .0000 12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 20 '0 .3179 .6676 .5433 .4420 .3585 .2901 .7342 .1887 .1516 1 .1652 2725 3364 - 3683 3774 .3703 .3526 3282 .3000 2 .0159 .0528 .0938 .1458 -1837 .2246 2521 2711 .2818 3 .0010 .0065 .0183 .0364 .0596 .0360 .1139 ' -1414 .1672 4 .0000 .0006 .0024 .0065 .0133 .0233 .0364 .0523 .0703 I '5 .0000 '.0000 .0002 .0009 .0022 .0043 .0088 .0145 0222 6 .0000 .0000 .0000 .0001 .0003 .0008 .0017 .0002 .0055 7 .0000 .0000 .0000 0000 .0000 .0001 .0002 .0005 .0011 - 8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 0000 12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 13 .0000 .0000 .0000 .0000 .0000 .0000 .0000. .0000 .0000 14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 ' .0000 15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 _ 16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 ._ .0000 19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 20 .0000 .0000 0000 .0000 0000 .0000 .0000 .0000 .0000 991 1 i 1 1 1 1 “Nu-to Val-bun”; Hmuth—Q au#mu_a «dam-340.3145“: Appet1dix B 44117105 111315 5 BINOMIAL 3110me11135 (Continued) _ . w____.__f__..__.___..——-— .10 ‘ .15 20 25 3'0 .35 .40 .45 .50 3100 -7225 .6400 5625 .4900 .4225 .3600 3025 .2500 -1300 .2550 .3200 .3750 .4200 .4550 .4300 .4950 5000 .0100 .0225 .0400 .0625 .0900 A .125 .1600 2025 .2500 .7290 .6141 5120 .4219 3430 .2746 2160 -1664 .1250 2430 3251 3340 .4219 .4410 .4436 .4320 .4034 .3750 .0270 - 574 .0960 .1406 .1390 .2339 2330 .3341 .3750 .0010 - .0034 .0030 .0156 .0270 .0429 .0640 .0911 .1250 .6561 5220 .4096 3164 '2401 .1735 .1296 .0915 .0625 .2916 3635 .4096 .4219 .4116 .3345 3456 2995 2500 .0436 .0975 .1536 2109 . .2646 3105 .3456 .3675 3750 .0036 .0115 .0256 ' .0469 .0756 .1115 .1536 2005 . .2500 .0001 .0005 -0016 .0039 .0031 .0150 .0256 .0410 .0675 5905 .4437 .3277 2373 .1631 .1160 .0773 .0503 .0312 3230 .3915 .4096 3955 -3602 .3124 1 2592 2059 .1562 .0729 .1332 .2043 2637 2037 .3364 .3456 .3369 .3125 .0031 .0244 .0512 .0379 .1323 .1311 2304 2757 3125 .0004 .0022 .0064 .0146 .0234 .0433 r .0763 - .1123 .1562 .0000 .0001 .0003 .0010 .0024 .0053 .0102 -.0135 .0312 .5314 .3771 .2621 .1730 .1176 .0754 .0467 . .0277 .0156 3543 . 3993' 3932 3560 3025 .2437 .1366 .1359 .0933 .0934 .1762 2453 .2966 3241 3230 3110 .2730 . .2344 .0146 .0415 .0319 .1313 -1352 .2355 2765 3032 3125 .‘0012 .0055 .0154 .0330 .0595 .0951 .1332 .1361 .2344- .0001 .0004 .0015 .0044 .0102 .0205 .0369 .0609 .0933 .0000 0000 .0001 .0002 .0007 0013 ' .0041 .0033 r .0156 . .4733 3206 2097 - .1335 .0324 .0490 .0230 .0152 .0073 3720 3960 3670 3115 2471 .1343 .1306 .0372 .0547 .1240 2097- .2753 .3115 3177 .2935 .2613 .2140 .1641 .0230 .0617 .1147 .1730 .2269 .2679 2903 2913 2734 .0026 .0109 .0237 .0577 .0972 .1442 .1935 2333 2734 .0002 .0012 .0043- .0115 .0250 .0466 _ .0774 .1172 .1641 .0000 .0001 .0004 .0013 .0036 .0034 .0172 .0320 .0547 .0000 .0000 .0000 .0001 .0002 .0006 .0016 . .0037 .0073 .4305 2725 .1673 -1001 .0576 .0319 .0163 .0034 ' .0039 3326 3347 3355 2670 .1977 .1373 .0396 .0543 .0312 .1433 .2376 .2936 .3115 .2965 .2537 .2090 .1569 - -1094 .0331 .0339 ' .1463 ., 2076 .2541 .2736 .2737 .2563 .2188 .0046 .0135 .0459 .0365 .1361 .1375 .2322 .2627 2734 .0004 .0026 .0092 .0231 .0467 .0303 .1239 .1719 -2133 .0000 .0002 .0011 .0033 .0100 .0217 .0413 .0703 .1094 .0000 .0000 .0001 .0004 .0012 .0033 .0079 .0164 .0313 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0017 .0039 Append-013 TABLE 5 BINOMIAL PROBABILITIES (Continued) 993 P n x .10 .15 .20 .25 .30 35 .40 .45 .50 9 0 .3874 .2316 .1342 .0751 .0404 .0207 .0101 .0046 .0020 1 .3874 .3679 .3020 .2253 .1556 -1004 .0605 .0339 .0176 2 .1722 .2697 .3020 3003 2668 .2162 . .1612 .1110 .0703 3 .0446 .1069 -1762 .2336 .2668 2716 .2508 .2119 -1641 4 .0074 .0283 .0661 .1168 .1715 .2194 .2508 .2600 .2461 5 .0008 .0050 .0165 .0389 .0735 .1181 .1672 .2128 .2461 6 0001 .0006 .0028 .0087 .0210 .0424 .0743 .1160 .1641 7 0000 .0000 .0003 .0012 .0039 .0098 .0212 .0407 .0703 8 .0000 .0000 .0000 .0001 .0004 .0013 .0035 .0083 .0176 9 .0000 .0000 .0000 - .0000 .0000 .0001 .0003 .0008 .0020 10 0 .3487 .1969 .1074 .0563 '-0282 .0135 .0060 .0025 .0010 ' 1 2874 .3474 -2684 .1877 -1211 .0725 .0403 .0207 .0098 2 .1937 .2759 .3020 ' .2816 2335 .1757 .1209 .0763 .0439 3 - .0574 -1298 2013 ' .2503 .2668 .2522 2150‘ .1665 .1172 4 .0112 .0401 .0881 -1460 .2001 .2377 .2508 .2384 _ .2051 5 .0015 .0085 .0264 .0584 .1029 .1536 .2007 2340 2461 6 .0001 .0012 .0055 .0162 .0368 .0689 .1115 1 .1596 .2051 7 0000 .0001 .0008 .0031 .0090 .0212 .0425 .0746 .1172 8 0000 .0000 . .0001 .0004 .0014 .0043 -0106 .0229 .0439 _ 9 0000 .0000 .0000 .0000 .0001 .0005 .0016 .0042 .0098 10 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 712- .0 2824 .1422 ' .0687 .0317 .0138 .0057 .0022 .0008 .0002 1 9 3766 .3012 .2062 .1267 .0712 .0368 .0174 .0075 .0029 2 2301 2924‘ ' -2835 2323 .1678 .1088 .0639 .0339 .0161 3 ' .0853 .1720 .2362 .2581 .2397 .1954 .1419 .0923 .0537 4 .0213 ' .0683 r .1329 .1936 2311 2367 .2128 .1700 .1208 5 . .0038 .0193 .0532 -1032 -1585 .2039 7 .2270 2226 .1934 6 .0005 .0040 .0155- .0401 .0792 ' .1281 .1766 2124 .2256 7 .0000 .0006 .0033 .0115 .0291 .0591 .1009 .1489 .1934 8 0000 .0001 .0005 .0024 .0078 .0199 .0420 .0762 .1208 9 .0000 .0000 .0001 .0004 .0015 .0048 .0125 .0277 .0537 10' _ .0000 .0000 .0000 .0000 .0002 .0008 .0025 .0068 .0161 11 0000 .0000 .0000 .0000 .0000 .0001 0003 .0010 .0029 12 0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 15 0 .2059 .0874 .0352 .0134 .0047 .0016 .0005 .0001 .0000 1 3432 2312 .1319 .0668 .0305 .0126 .0047 .0016 - .0005 2 .2669 .2856 2309 -1559 .0916 -.0476 .0219 .0090 .0032 3 .1285 .2184 2501 2252 .1700 .1110 .0634 .0318 .0139 4 .0428 .1156 .1876 2252 .2186 .1792 .1268 .0780 .0417 5 .0105 .0449 :1032 .1651 2061 .2123 .1859 .1404 .0916 6 .0019 .0132 .0430 .0917 .1472 .1906 .2066 .1914 .1527 7 .0003 .0030 .0138 .0393 .0811 .1319 -1771 2013 .1964 8 .0000 0005 .0035 .0131 .0348 .0710 .1181 -1647 . .1964 9 .0000 .0001 .0007 .0034 .0016 .0298 .0612 -1048 -1527 10 0000 .0000 .0001 .0007 .0030 .0096 .0245 .0515 .0916 11 0000 .0000 .0000 0001 .0006 .0024 .0074 .0191 r .0417 12 0000 - .0000 .0000 .0000 .0001 .0004 .0016 .0052 .0139 13 0000 .0000 .0000 5 .0000 .0000 .0001 .0003 .0010 .0032 14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 15 .0000 .0000 _ .0000 .0000 .0000 .0000 .0000 .0000 .0000 994 Appendix B Tables 7 TABLE 5 BINOMIAL PROBABILITIES (Continued) .19 ' .15 .29 .25 30 .35 .40 .45 so a H .1501 .0536 .0180 .0056 .0016 0004 _ .0001 .0000 3000 .3002 .1704 .0811 . .0338 .0126 .0042 .0012 .0003 .0001 .2835 .2556 .1723 .0958 .0458 , .0190 .0069 .0022 .0006 .1680 .2406 .2297 .1704 .1046 .0547 .0246 .0095 .0031 .0700 .1592 . .2153 .2130 .1681 .1104 .0614 .0291 .0117 .0218 .0787 .1507 .1988 .2017 .1664 .1146 .0666 3327 .0052 .0301 .0816 .1436 .1873 .1941 .1655 .1181 .0708 , .0010 .0091 .0350 .0820 .1376 .1792 .1892 .1657 .1214 . . V .0002 ' .0022 .0120 .0376 .0811 .1327 .1734 .1864 .1669 . .0000 .0004 . .0033 .0139 .0386 .0794 .1284 .1694 .1855 .0000 .0001 .0008 .0042 .0149 .0385 .0771 .1248 .1669 .0001 .0010 0046 .0151 .0374 0742 1214 18 ummuh-Ir—I-Iwr-I mqmuawN—awwqaut-mmme .1216 .0388 .0115 .0032 .0008 .0002 .0000 .0000 .0000 .2702 .1368 .0576 .0211 .0068 .0020 .0005 .0001 .0000 .2852 .2293 .1369 ' .0669 .0278 .0100 .0031 .0008 .0002 .1901 .2428 .2054 .1339 .0716 ' .0323 .0123 .0040 .0011 .0898 .1821 .2182 .1397 '.1304 .0738 .0350 .0139 .0046 .0319 - .1028 r .1746 .2023 .1789 .1272 .0746 .0365 .0148 .0454 .1091 .1686 .1916 .1712 .1244 ' .0746 .0370 .0020 .0160 ' I .0545 .1124 .1643 .1844 .1659 .1221 .0739 .0004 .0046 .0222 ' .0609 .1144 .1614 .1797 .1623 .1201 .0001 .0011 .0074 .0271 .0654 .1158 .1597 .1771 .1602 ‘ON-JGUIJth—c was Tables ' . _ 995 TABLE 5 BINOMIAL PROBABILITIES (Continued) * P n .1: 0.55 0.60 0.05 0.10 0.75 0.30 0.85 0.90 0.95 2 0 0.2025 0.1600 0.1225 0.0900 0.0625 0.0400 0.0225 0.0100 0.0025 1 0.4950 0.4800 7 0.4550 0.4200 0.3750 0.3200 0.2550 0.1800 0.0950 2 0.3025 0.3600 0.425 0.4900 ' 0.5625 0.6400 0.7225 0.8100 0.9025 0.0911 0 0640 0.0429 0.0270 0.0156 0.0080 0.0034» 0.0010 0.0001 3 0 . 1 0.3341 0.2880 0.2389 0.1890 0.1406 0.0960 0.0574 0.0270 - 0.0071 2 0.4084 0.4320 0.4436 0.4410 0.4219 0.3840 0.3251 0.2430 0.1354 3 . 0.1664 0.2160 0.2746 0.3430 0.4219 0.5120 0.6141 0.7290 0.8574 4 0 0.0410 0.0256 0.0150 0.0081 0.0039 0.0016 0.0005 0.0001 0.0000 1 0.2005 0. 1536 0. I I 15 0.0756 0.0469 0.0256 0.01 15 0.0036 0.0005 2 0.3675 0.3456 0.3105 0.2646 0.2109 0.1536 0.0975 0.0486 0.0135 3 0.2995 0.3456 0.3845 0.4116 0.4219 0.4096 0.3685 0.2916 0. 1715 4 0.0915 0.1296 0.1785 0.2401 0.3164 0.4096 0.5220 0.6561 0.8145 5 0 0.0185 0.0102 0.0053 0.0024 0.0010 0.0003 0.0001 0.0000 0.0000 1 0.1128 0.0768 0.0488 0.0284 0.0146 0.0064 0.0022 0.0005 0.0000 2 0.2757 0.2304 0.1811 0.1323 0.0879 0.0512 0.0244 0.0081 0.0011 3 0.3369 0.3456 03364 0.3087 0.2637 0.2048 0.1382 0.0729 0.0214 4 0.2059 0.2592 0.3124 0.3601 0.3955 0.4096 0.3915 0.3281 0.2036 5 7 0.0503 0.0778 0.1160 0. 1681 0.2373 0.3277 0.4437 0.5905 0.7738 -6 0 0.0083 0.0041 0.0018 0.0007 0.0002 - 0.0001 0.0000 0.0000 0.0000 1 0.0609 0.0369 0.0205 0.0102 0.0044 0.0015 0.0004 0.0001 ' 0.0000 2 0.1861 0.1382 0.0951 0.0595 0.0330 1 0.0154 0.0055 0.0012 0.0001 , r 3 0.3032 ' 0.2765 - 0.2355 0.1852 0. 13 18 0.0819 0.0415 0.0146 0.0021 ' 4 0.2780 7 0.3 1 10 0.3280 0.3241 0.2966 0.2458 0.1762 0.0984 0.0305 ' 5. 0.1359 0.1866 0.2437 0.3025 0.3560 0.3932 0.3993 0.3543 7 _ 0.2321 6 0.0277 0.0467 0.0754 0.1176 0.1780 0.2621 0.3771 0.53 14 0.7351 7 0 _ 0.0037 0.0016 0.0006 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 1 0.0320 0.0172 0.0084 0.11736 0.0013 0.0004 0.0001 0.0000 _ 0.0000 2 0.1172 0.0774 0.0466 0.0250 0.01 15 0.0043 0.0012 0.0002 0.0000 3 0.2388 0.1935 0.1442 0.0972 0.0577 0.0287 0.0109 0.0026 0.0002 4 0.2918 0.2903 0.2679 0.2269 0.1730 0.1147 0.0617 0.0230 0.0036 5 0.2140 0.2613 0.2985 0.3177 0.3115 0.2753 0.2097 0.1240 0.0406 6 0.0872 0.1306 0.1848 0.2471 0.31 15 0.3670 0.3960 0.3720 0.2573 7 0.0152 0.0280 0.0490 0.0824 0.1335 0.2097 0.3206 0.4783 0.6983 8 0.0017 0 (8.107 0 0002 0.0001 0.0000 0 0000 0.0000 0.0000 0.0000 0.0164 0.0079 0.0033 0.0012 0.11104 0.0101 0.0000 0.0000 0.0000 0.0703 0.0413 0.0217 0.0100 0.0038 0.0011 0.0002 0.0000 0.0000 0.1719 0.1239 0.0808 0.0467 0.0231 0.0092 0.0026 0.0004 0.0000 0.2627 0.2322 0.1875 0.1361 0.0865 0.0459 0.0185 0.0046 0.0004- 0.2568 0.2787 0.2786 0.2541 0.2076 0.1468 0.0839 0.0331 0.0054 0.1569 0.2090 0.2587 0.2965 0.3115 0.2936 0.2376 0.1488 0.0515 0.0548 0.0896 0.1373 0.1977 0.2670 0.3355 0.3847 0.3826 02793 0.0084 0.0168 0.0319 0.0576 0.1001 0.1678 0.2725 0.4305 0.6634 mummAmM—c 996 Appendix B 101315 TABUE 5 BINOMIAL PROBABILITIES (Continued) - 1 W i . v ' n x 0.55 0.60 0.65 0:70 0.75 0.80 0.85 0.90 095 3 ——”——_______________..———-P—"——'——‘-——— 1 0.0003 0.0003 0.0001 0.0000 00000 0.0000 0.0000 0.0000 0.0000 9 0 . 1 0.0083 0.0035 0.0013 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000 1 2 0.0407 0.0212 0.0098 ' 0.0039 0.0012 0.0003 0.0000 0.0000 0.0000 3 0.1160 0.0743 0.0424 0.0210 0.0087 0.0023 0.0006 0.0001 mm 4 02128 0.1672 0.1181 0.0735 0.0389 0.0165 0.0050 0.0008 0.0900 5 0.2600 0.508 0.2194 0.1715 0.1168 0.0661 0.0283 0.0074 0000.5 6 0.2119 0.2508 0.2716 0.2668 0.2336 0.1762 0.1069 0.0446 0,0077 7 0.1110 0.1612 0.2162 0.2668 0.3003 0.3020 0.2597 0.172 00529 ,1 8 0.0339 0.0605 0.1004 0.1556 0.2253 0.3020 0.3679 0.3874 02935 . 1 9 0.0046 0.0101 0.0207 0.0404 0.0751 0.1342 07.316 0.3874 0.6302 10 0 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1 0.0042 0.0016 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 1 2 0.0229 0.0106 0.0043 0.0014 0.0004 0.0001 0.0000 0.0000 0.0000 3 0.0746 0.0425 0.0212 0.0090 0.0031 0.0008 0.0001 0.0000 0.0000 4 0.1596 0.1115 0.0689 0.0368 0.0162 0.0055 0.0012 0.0001 0.0000 5 0.2340 0.2007 0.1536 0.1029 0.0584 0.0264 0.0085 0.0015 0.0001 6 0.2384 02508 0.2377 0.2001 0.1460 0.0881 0.0401 0.0112 0.0010 7 0.1665 0.2150 02522 0.2668 0.2503 0.2013 0.1298 0.0574 0.0105 8 ' 0.0763 0.1209 0.1757 02335 02816 0.3020 0.2759 0.1937 0.0746 9. 0.0207 0.0403 0.0725 0.1211 0.1877 0.2684 0.3474 0.3874 0.3151 10 0.0025 0.0060 0.0135 0.0282 0.0563 0.1074 0.1969 0.3487 05987 12 0 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1 0.0010 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0068 0.0025 0.0008 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 3 0.0277 0.0125 0.0048 0.0015 0.0004 0.0001 0.0000 0.0000 0.0000 4 0.0762 0.0420 0.0199 0.0078 0.0024 0.0005 0.0001 0.0000 0.0000 ‘ 5 0.1489 0.1009 0.0591 0.0291 0.0115 0.0033 0.0006 0.0000 0.0000 ' 1 6 0.2124 0.1766 0.1281 0.0792 0.0401 0.0155 0.0040 0.0005 0.0000 - ' 1 7 0.2225 0.2270 02039 0.1585 0.1032 0.0532 0.0193 0.0038 _ 0.0002 8 0.1700 02128 0.2367 0.2311 0.1936 0.1329 0.0683 0.0213 0.0021 7 9 0.0923 0.1419 0.1954 0.2397 0.2581 0.2362 0.1720 0.0852 0.0173 10 0.0339 0.0639 0.1088 0.1678 0.2323 0.2835 0.2924 02301 0.0988 11 0.0075 0.0174 0.0368 0.0712 0.1267 02062 0.3012 0.3766 0.3413 12 0.0008 0.0022 0.0057 0.0138 0.0317 0.0687 0.1422 0.2824 05404 15 00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0101 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0003 0.0001 0.0000 0.0000 0.0000 0.11100 0.0000 0.0000 0.0052 0.0016 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0191 0.0074 0.0024 0.0006 0.0001 0.0000 0.0000 , 0.0000 0.0000 0.0515 0.0245 0.0096 0.0030 0.0007 0.0001 0.0000 0.0000 0.0000 0.1048 . 0.0612 0.0298 0.0116 0.0034 0.0007 0.0001 0.0000 0.0000 0.1647 0.1181 0.0710 0.0343 0.0131 0.0035 0.0005 0.0000 1mm“ 0.2013 0.1771 0.1319 0.0811 0.0393 0.0138 0.0030 0.0003 11-0000 0.1914 0.2066 0.1906 0.1472 0.0917 0.0430 0.0132 0.0019 (3-9090 0.1404 0.1859 0.2123 0.2061 0.1651 0.1032 0.0449 0.0105 1101*” , 0.0780 0.1263 0.1792 0.2186 0.2252 0.1876 0.1156 0.0428 0.0049 _o\am~acnm4an—-c u—H Appendix B 1013135 - 997 TABLE 5 BINOMIAL PROBABflII'IES (Continued) _fl__,__~—m__.__..._—+——-— P M 1'! x 055 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 W 12 0.0318 0.0634 0.1110 0.1700 0.2252 0.2501 0.2184 0.1285 0.0307 13 0.0090 0.0219 0.0476 0.0916 0.1559 0.2309 0.2856 0.2669 0.1348 14 0.0016 0.0047 0.0126 0.0305 0.0668 0.1319 0.2.312 03432 03653 15 0.0001 0.0005 0.0016 0.0047 0.0134 0.0352 0.0874 0.2059 0.4633 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 0 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2‘ 0.0001 0.0000 0.0000 0.0000 0.01200 0.0000 0.0000 0.0000 0.0000 3 0.0009 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4 0.0039 0.0011 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5 0.0134 0.0045 0.0012 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 6 0.0354 0.0145 0.0047 0.0012 0.0002 0.0000 0.0000 ‘ 0.0000 0.0000 7 0.0742 0.0374 0.015 1 0.0046 0.0010 0.0001 0.0000 0.0000 0.0000 8 0.1248 0.0771 0.0385 0.0149 0.0042 - 0.0008 0.0001 0.0000 0.0000 9 0.1694 0.1284 0.0794 0.0386 0.0139 0.0033 0.0004 0.0000 0.0000 10 0.1864 0.1734 0.1327 0.0811 0.0376 0.0120 0.0022 0.0002 0.0000 11 0.1657 0.1892 0.1792 0.1376 0.0820 0.0350 0.0091 0.0010 0.0000 12 0.1181 0.1655 0.1941 0.1873 0.1436 0.0816 0.0301 0.0052 0.0002 13 0.0666 0.1146 0.1664 0.2017 0.1988 0.1507 0.0787 0.0218 0.0014 14 0.0291 0.0614 0.1104 0.1681 0.2130 0.2153 0.1592 0.0700 0.0093 15 0.0095 0.0246 0.0547 0.1046 0.1704 0.2297 0.2406, 0.1680 0.0473 16 0.0022 0.0069 0.0190 0.0458 0.0958 0.1793 0.2556 _ 0.2835 0.1683 .17 0.0003 0.0012 0.0042 0.0126 0.0338 0.081 1 0.1704 0.3002 03763 ' 18 ' 0.0000 0.0001 0.0004 0.0016 0.0056 0.0180 0.0536 0.1501 0.3972 20 . - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ' 0.0000 0.0000 0.11100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 _ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0013 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 I‘ 0.0000 0.0000 0.0049 0.0013 0.0003 0.11100 0.0000 0.0000 0.0000 0.0000 0.11100 0.0150 0.0049 0.0012 0.0002 0.0000 0.0000 0.0000 0.0000 0.11100 . 0.0366 0.0146 0.0045 0.0010 0.0002 0.0000 0.0000 0.0000 0.0000 0.0727 0.0355 0.0136 0.0039 0.0008 0.0001 0.0000 0.0000 0.0000 -0.1185 0.0710 0.0336 0.0120 0.0030 . 0.0005 0.0000 0.0000 0.11100 10 0.1593 0.1171 0.0686 0.0303 0.0099 0.0020 0.0002 0.01110 0.0000 11 0.1771 0.1597 0.1158 0.0654 0.0271 0.0074 0.0011 0.0001 0.0000 . 12 0.1623 0.1797 0.1614 0.1144 0.0609 0.0222 0.0046 0.0004 V 0.0000 13 0.1221 0.1659 0.1844 0.1643 0.1124 0.0545 0.0160 0.0020 0.0000 14' 0.0746 0.1244 0.1712 0.1916 0.1686 0.1091 0.0454 0.0089 0.11103 15 0.0365 0.0746 0.1272 0.1789 0.2023 0.1746 0.1028 0.0319 0.0022 16 0.0139 0.0350 0.0738 0.1304 0.1897 0.2182 0.1821 0.0898 0.0133 17 0.0040 0.0123 0.0323 0.0716 0.1339 0.2054 0.2428 0.1901 0.0596 18 0.0008 0.0031 0.0100 0.0278 0.0669 0.1369 0.2293 0.2852 0.1887 19 0.0001 0.0005 0.0020 0.0068 0.0211 0.0576 0.1368 0.2702 0.3774 20 ; 0.0000 0.0000 0.0002 0.0008 0.0032 0.0115 0.0388 0.1216 0.3585 ____________—_______.__—~——————-—— somuau-nwnua ...
View Full Document

This note was uploaded on 02/04/2011 for the course MGMT 305 taught by Professor Priya during the Spring '08 term at Purdue University-West Lafayette.

Page1 / 12

M305_Tables - P. «D- STANDARD NORMAL DISTRIBUTION...

This preview shows document pages 1 - 12. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online