{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Calculus with Analytic Geometry by edwards & Penney soln ch7

# Calculus with Analytic Geometry

This preview shows pages 1–4. Sign up to view the full content.

Section 7.1 C07S01.001: If f ( x ) = e 2 x , then f ( x ) = e 2 x · D x (2 x ) = 2 e 2 x . C07S01.002: If f ( x ) = e 3 x 1 , then f ( x ) = e 3 x 1 · D x (3 x 1) = 3 e 3 x 1 . C07S01.003: If f ( x ) = exp( x 2 ), then f ( x ) = exp( x 2 ) · D x ( x 2 ) = 2 x exp( x 2 ). C07S01.004: If f ( x ) = e 4 x 3 , then f ( x ) = e 4 x 3 · D x (4 x 3 ) = 3 x 2 e 4 x 3 . C07S01.005: If f ( x ) = e 1 /x 2 , then f ( x ) = e 1 /x 2 · D x (1 /x 2 ) = 2 x 3 e 1 /x 2 . C07S01.006: If f ( x ) = x 2 exp( x 3 ), then f ( x ) = 2 x exp( x 3 ) + x 2 · 3 x 2 exp( x 3 ) = (2 x + 3 x 4 )exp( x 3 ). C07S01.007: If g ( t ) = t exp( t 1 / 2 ), then g ( t ) = exp( t 1 / 2 ) + t · 1 2 t 1 / 2 exp( t 1 / 2 ) = 2 + t 2 exp( t 1 / 2 ). C07S01.008: If g ( t ) = ( e 2 t + e 3 t ) 7 , then g ( t ) = 7( e 2 t + e 3 t ) 6 (2 e 2 t + 3 e 3 t ). C07S01.009: If g ( t ) = ( t 2 1) e t , then g ( t ) = 2 te t ( t 2 1) e t = (1 + 2 t t 2 ) e t . C07S01.010: If g ( t ) = ( e t e t ) 1 / 2 , then g ( t ) = 1 2 ( e t e t ) 1 / 2 ( e t + e t ). C07S01.011: If g ( t ) = e cos t = exp(cos t ), then g ( t ) = ( sin t )exp(cos t ). C07S01.012: If f ( x ) = xe sin x = x exp(sin x ), then f ( x ) = exp(sin x ) + ( x cos x )exp(sin x ) = e sin x (1 + x cos x ) . C07S01.013: If g ( t ) = 1 e t t , then g ( t ) = te t (1 e t ) t 2 = te t + e t 1 t 2 . C07S01.014: If f ( x ) = e 1 /x , then f ( x ) = 1 x 2 e 1 /x . C07S01.015: If f ( x ) = 1 x e x , then f ( x ) = ( 1) e x (1 x ) e x ( e x ) 2 = 1 1 + x e x = x 2 e x . C07S01.016: If f ( x ) = exp( x ) + exp( x ), then f ( x ) = 1 2 x 1 / 2 exp ( x ) 1 2 x 1 / 2 exp ( x ) = exp( x ) exp( x ) 2 x . C07S01.017: If f ( x ) = exp( e x ), then f ( x ) = e x exp( e x ). C07S01.018: If f ( x ) = ( e 2 x + e 2 x ) 1 / 2 , then f ( x ) = 1 2 ( e 2 x + e 2 x ) 1 / 2 ( 2 e 2 x 2 e 2 x ) = e 2 x e 2 x e 2 x + e 2 x . 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
C07S01.019: If f ( x ) = sin(2 e x ), then f ( x ) = 2 e x cos(2 e x ). C07S01.020: If f ( x ) = cos( e x + e x ), then f ( x ) = ( e x e x )sin( e x + e x ). C07S01.021: If f ( x ) = ln(3 x 1), then f ( x ) = 1 3 x 1 · D x (3 x 1) = 3 3 x 1 . C07S01.022: If f ( x ) = ln(4 x 2 ), then f ( x ) = 2 x x 2 4 . C07S01.023: If f ( x ) = ln (1 + 2 x ) 1 / 2 , then f ( x ) = 1 2 · 2(1 + 2 x ) 1 / 2 (1 + 2 x ) 1 / 2 = 1 1 + 2 x . C07S01.024: If f ( x ) = ln (1 + x ) 2 , then f ( x ) = 2(1 + x ) (1 + x ) 2 = 2 1 + x . C07S01.025: If f ( x ) = ln ( x 3 x ) 1 / 3 = 1 3 ln( x 3 x ), then f ( x ) = 3 x 2 1 3( x 3 x ) . C07S01.026: If f ( x ) = ln (sin x ) 2 = 2ln(sin x ), then f ( x ) = 2cos x sin x = 2cot x . C07S01.027: If f ( x ) = cos(ln x ), then f ( x ) = sin(ln x ) x . C07S01.028: If f ( x ) = (ln x ) 3 , then f ( x ) = 3(ln x ) 2 x . C07S01.029: If f ( x ) = 1 ln x , then (by the reciprocal rule) f ( x ) = 1 x (ln x ) 2 . C07S01.030: If f ( x ) = ln(ln x ), then f ( x ) = 1 x ln x . C07S01.031: If f ( x ) = ln x ( x 2 + 1) 1 / 2 , then f ( x ) = ( x 2 + 1) 1 / 2 + x 2 ( x 2 + 1) 1 / 2 x ( x 2 + 1) 1 / 2 = 2 x 2 + 1 x ( x 2 + 1) . C07S01.032: If g ( t ) = t 3 / 2 ln( t + 1), then g ( t ) = 3 2 t 1 / 2 ln( t + 1) + t 3 / 2 t + 1 = t 1 / 2 [2 t + 3ln( t + 1) + 3 t ln( t + 1)] 2( t + 1) . C07S01.033: If f ( x ) = lncos x , then f ( x ) = sin x cos x = tan x . C07S01.034: If f ( x ) = ln(2sin x ) = (ln2) + ln(sin x ), then f ( x ) = cos x sin x = cot x . C07S01.035: If f ( t ) = t 2 ln(cos t ), then f ( t ) = 2 t ln(cos t ) t 2 sin t cos t = t [2ln(cos t ) t tan t ]. C07S01.036: If f ( x ) = sin(ln2 x ), then f ( x ) = [cos(ln2 x )] · 2 2 x = cos(ln2 x ) x . 2
C07S01.037: If g ( t ) = t (ln t ) 2 , then g ( t ) = (ln t ) 2 + t · 2ln t t = (2 + ln t )ln t. C07S01.038: If g ( t ) = t 1 / 2 [cos(ln t )] 2 , then g ( t ) = 1 2 t 1 / 2 [cos(ln t )] 2 + 2 t 1 / 2 [cos(ln t )] · sin(ln t ) t = [cos(ln t )][cos(ln t ) 4sin(ln t )] 2 t 1 / 2 .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}