phys documents (dragged) 6

phys documents (dragged) 6 - Physics Formulary by ir J.C.A...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Physics Formulary by ir. J.C.A. Wevers V 13 Theory of groups 71 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 13.1.1 Defnition oF a group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 13.1.2 The Cayley table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 13.1.3 Conjugated elements, subgroups and classes . . . . . . . . . . . . . . . . . . . . . . . 71 13.1.4 Isomorfsm and homomorfsm; representations . . . . . . . . . . . . . . . . . . . . . 72 13.1.5 Reducible and irreducible representations . . . . . . . . . . . . . . . . . . . . . . . . 72 13.2 The Fundamental orthogonality theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 13.2.1 Schur’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 13.2.2 The Fundamental orthogonality theorem . . . . . . . . . . . . . . . . . . . . . . . . . 72 13.2.3 Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 13.3 The relation with quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 13.3.1 Representations, energy levels and degeneracy . . . . . . . . . . . . . . . . . . . . . 73 13.3.2 Breaking oF degeneracy by a perturbation .
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/30/2011 for the course PHYSICS 208 taught by Professor Ye during the Spring '10 term at Blinn College.

Ask a homework question - tutors are online