{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Math 101 Apr 00 Solutions

# Math 101 Apr 00 Solutions - MATH 101 Final Examination...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 101 Final Examination, April 2000, SOLUTIONS l—i (2—i) 2—3i—1 1 3. 1. = - =—=___ (an 2+i (2—i) 4+1 5 51 The real part ofzis 11;. (b):z:2 =1+/ f(t)dt 2z=f(x), by the FTC, Part1. \$+1 1 3+1 °° a:+1 (c)/0°° 2:1/3(_—\$——2+:c+1)dz_11+12_/(; \$1/3(z2+x+1)d\$+/1 x1/3(x2+z+1) da: Notice that ———\$—+1—-— < —1——— which converges for 0 < a: < 1. :131/3(:1:2 + :1: + 1) 31/3 By the comparison theorem, I1 converges. . . x+l 2a: 2a: _ 2 A150 notice that 1f :6 > 1, then m < m < W — W Wthh converges when 1 < a; < 00. Again by the comparison theorem, 12 converges. Since our original integral is the sum of two convergent integrals, it will also converge. d (d) —y+ay+y=0 r2 2+r+1=0=>r=—_1—iﬂ=-l+ﬂ 2 2 2 The solution is y = ole—’3’ cos 39:; + C2612" sin 3.92:. (e) y = ole“? cos 3251: + aze—éz Sin 1231; + 2 1'2 (f)hm n—roo n—2 1 + F = also; (9 W G) Letxo=n0,a:n=1, thenscj=i,A:z:= =nlgr<§°ZzH/1 + zﬁAm 2 =/‘;1m:/1+\$2d\$=-/2 uzdu=[%u %]1 =‘/§—1 1 Y 1 2. (a)/(;ey—‘/1——ydy 3. (c) /01 27r(:c + 2)(1 — 2:3) d9: (d) f(z) = §<1 +m2)% 1 HI) = 3 (g) (1 +x2)§<22) (rm)? = 42:20 + m2) 2 L:/ \/1+4:z:2(1+a:2)d:1: 0 (a) Let u = sin 21:, du : 2 cos 2a: (11: § 1 / sin5(2x) cos(2z) dz = l / u5 du o o (b) Let a; = 2sin0, d2: = 2cosOd6 /\/4-a:2d:r=2/V4—4sin29cosﬂd6 =4/cos20d0 1 =4/§(c0529+1)d6 =2<s1n26+0)+c 2 _ 0 =sm29+§+C =2si119cos9+g+0 = <;>( )< (c) Letu=ln(1+z2) and dvzdx, thenduzl‘i—Zgandv=a: 2:2:2 1 + x2 2—2 2 =xln(1+\$2)—/2L——+—d\$ da: /ln(l+z2)dx = xln(1 +252) —/ 1+:I:2 2(1+a:2) _ 2 —\$ln(1+x)—/1—+;:2—dz—/ =xln(1+z2)—2x—2arctanx+C )+0 2 1+3:2 dz @) z+1 A B C EGTB=E+E+z—1 2+1=Aa:(:z:—1)+B(.11:—1)+C':c2 letx=021=-—B=>B=—1 letz=12 2=C lam-=2: 3=2A+B+4C ©322A—1+8:>A=—2 z+1 2 1 2 /22(z—1)d\$_/_;_-z3+x——ldx 1 =—2ln|\$|+;+2ln|m—1I+C dz 4. E =k(3—m)(2—z),z(0) = 1 (a 1 A B atzmiza=3_z+2_x 1=A(2—2:)+B(3—:c) 1etz=2=>B=1 letz=3=>A=——1 Therefore, hat—\$704k” -1 1 /3_x+2_\$_m+c 1n|3—x|—1n|2—2:|=kt+C' Subina:(0)=1 => ln2—1n1=C=>C=1n2 1n =kt+ln2 2—11: 3—2: —k mka-m t 3—:1: _ kt 2(2—z) 6 3—15 :43,“ —2:ce"‘ _4e"‘—3 :1: 28kt—1 kt_ kt 4e 3=lim4ke =2 (b) 3310101)“) = 131—1330 23’“ — 1 t—roo 2,66“ 5. (a) I z T4 = -A2—0 (8(90) + 28(01) + 28(02) + 25(03) + 8(94» = 2(100664 + 2(100543) + 2(100435) + 2(100331) + 1.00233) = 8.03515 I z 54 = %(3(90) + 48(01) + 23(92) + 43(63) + 5(04» 2 = 3(100664 + 4(1.00543) + 2(1.00435) + 4(1.00331) + 1.00233) w 8.035087 (b) Given that Is“) (9)[ g 1—0'3—0 therefore |s"(0)| 5 0.002 = K2 and [5(4>(0)| g 0.004 = K4. 1’ 3 0.002(8 — 0) _3 = — < — z _ Eu [1 f(z)dz T4 _ 12(4), 5 33 x 10 b 5 0.004(8 — 0) _3 = — < —— z ' Est /a f(x)dx S4 _ 180(4),, 284x10 6. NOTE: There are inconsistencies in this question. We will solve the initial value problem at the end of the question and ignore the values given in the text of the question. y"(t) + 91/0) = 4cost, y(0) = 3, y’(0) = -6 The auxiliary equation is r2 + 9 = 0 => 1‘ 2 i312 Therefore, yh = 01 sin(3t) + C2 cos(3t) Let yp = Acost+Bsint y; = ——Asint+ Bcost y: = —Acost— Bsint Substitute these values into our differential equation: —Acost — Bsint+9Acost+QBsint = 4cost 9A—A=4=>A=1/2 9B — B = 0 => B = 0 Therefore, 1 y(t) = 01 sin(3t) + 62 cos(3t) + 5 cost 1 y’ (t) = 361 cos(3t) — 3c2 sin(3t) — 5 sint 1 5 Subiny(0) =3=>3=0+C2(1)+ 5(1) =>62 = a Subiny’(0) = ~6=> —6=3cl(1)—0-—0=>c1 = —2 1 Therefore, y(t) = —2 sin 3t + gees 3t + 5 cost _ k(1—z3) if 05x31 7'f(\$)_{0 if \$<00rz>1 (a) 1 / k(1 — \$3) d1: = 1 o 4 1 k [2: — i] = 1 4 o k(§)=1 (ﬁlth (b) 1 §x(l—z3)dx [\$2 15]] 2 5 0 ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern