Calculus with Analytic Geometry by edwards & Penney soln ch8

# Calculus with Analytic Geometry

This preview shows pages 1–4. Sign up to view the full content.

Section 8.2 C08S02.001: Let u =2 3 x . Then du = 3 dx , and so Z (2 3 x ) 4 dx = 1 3 Z (2 3 x ) 4 ( 3) dx = 1 3 Z u 4 du = 1 3 · 1 5 u 5 + C = 1 15 (2 3 x ) 5 + C. C08S02.002: Let u =1+2 x . Then x = 1 2 ( u 1) and dx = 1 2 du , so that Z 1 (1+2 x ) 2 dx = 1 2 Z u 2 du = 1 2 u + C = 1 2(1 + 2 x ) + C. C08S02.003: Let u x 3 4. Then du =6 x 2 dx , so that Z x 2 (2 x 3 4) 1 / 2 dx = 1 6 Z (2 x 3 4) 1 / 2 · 6 x 2 dx = 1 6 Z u 1 / 2 du = 1 6 · 2 3 u 3 / 2 + C = 1 9 (2 x 3 4) 3 / 2 + C. C08S02.004: Let u =5+2 t 2 . Then du =4 tdt , and so Z 5 t 5+2 t 2 dt = 5 4 Z 4 t t 2 dt = 5 4 Z 1 u du = 5 4 ln | u | + C = 5 4 ln(5 + 2 t 2 )+ C. C08S02.005: Let u x 2 + 3. Then du xdx , and so Z 2 x (2 x 2 +3) 1 / 3 dx = 1 2 Z (2 x 2 1 / 3 · 4 = 1 2 Z u 1 / 3 du = 1 2 · 3 2 u 2 / 3 + C = 3 4 (2 x 2 2 / 3 + C. C08S02.006: Let u = x 2 . Then du , and therefore Z x sec 2 x 2 dx = 1 2 Z ( sec x 2 ) 2 · 2 = 1 2 Z (sec u ) 2 du = 1 2 tan u + C = 1 2 tan( x 2 C = 1 2 tan x 2 + C. C08S02.007: Let u = y 1 / 2 , so that du = 1 2 y 1 / 2 dy . Then Z y 1 / 2 ³ cot y 1 / 2 ´³ csc y 1 / 2 ´ dy Z cot u csc udu = 2csc u + C = y + C. C08S02.008: Let u = π (2 x + 1). Then du πdx , and hence Z sin π (2 x +1) dx = 1 2 π Z sin = 1 2 π cos u + C = 1 2 π cos π (2 x +1)+ C. C08S02.009: Let u = 1 + sin θ . Then du = cos θdθ , and therefore Z (1 + sin θ ) 5 cos = Z u 5 du = 1 6 u 6 + C = 1 6 (1 + sin θ ) 6 + C. C08S02.010: Let u = 4 + cos2 x . Then du = 2sin2 , and thus Z sin2 x 4 + cos2 x dx = 1 2 Z x 4 + cos2 x dx = 1 2 Z 1 u du = 1 2 ln | u | + C = 1 2 ln(4 + cos2 x C. 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
C08S02.011: Let u = cot x . Then du = csc 2 xdx .S o Z e cot x csc 2 = Z e u du = e u + C = e cot x + C =exp( cot x )+ C. C08S02.012: Let u =( x +4) 1 / 2 . Then du = 1 2 ( x 1 / 2 dx .T h u s Z exp ( ( x 1 / 2 ) ( x 1 / 2 dx =2 Z e u du e u + C = 2exp ³ ( x 1 / 2 ´ + C. C08S02.013: Let u =ln t . Then du = 1 t dt ,s o Z (ln t ) 10 t dt = Z u 10 du = 1 11 u 11 + C = 1 11 (ln t ) 11 + C. C08S02.014: Let u =1 9 t 2 . Then du = 18 tdt . Hence Z t 1 9 t 2 dt = 1 18 Z (1 9 t 2 ) 1 / 2 · ( 18 t ) dt = 1 18 Z u 1 / 2 du = 1 18 · 2 u 1 / 2 + C = 1 9 p 1 9 t 2 + C. C08S02.015: Let u =3 t , so that du dt . Then Z 1 1 9 t 2 dt = 1 3 Z 1 1 9 t 2 · 3 dt = 1 3 Z 1 1 u 2 du = 1 3 arcsin u + C = 1 3 arcsin(3 t C. C08S02.016: Let u =1+ e 2 x . Then du e 2 x dx and thus Z e 2 x 1+ e 2 x dx = 1 2 Z 2 e 2 x e 2 x dx = 1 2 Z 1 u du = 1 2 ln | u | + C = 1 2 ln ( e 2 x ) + C. C08S02.017: Let u = e 2 x . Then du e 2 x dx . Therefore Z e 2 x e 4 x dx = 1 2 Z 2 e 2 x 1+( e 2 x ) 2 dx = 1 2 Z 1 u 2 du = 1 2 arctan u + C = 1 2 arctan ( e 2 x ) + C. C08S02.018: Let u = arctan x . Then du = 1 x 2 dx , so that Z exp(arctan x ) x 2 dx = Z e u du = e u + C = exp(arctan x C. C08S02.019: Let u = x 2 , so that du , and so Z 3 x 1 x 4 dx = 3 2 Z 2 x 1 x 4 dx = 3 2 Z 1 1 u 2 du = 3 2 arcsin u + C = 3 2 arcsin ( x 2 ) + C. C08S02.020: Let u = sin2 x . Then du = 2cos2 , and thus Z sin 3 2 x cos2 = 1 2 Z u 3 du = 1 8 u 4 + C = 1 8 sin 4 2 x + C. 2
The Mathematica 3 . 0 command Integrate[ ( (Sin[2 x] 3) Cos[2 x],x]+C produces exactly the same response, as does the analogous command int( sin(2 x) 3 cos(2 x), x) + C; in Maple V Ver. 5 . 1 and a similar command in Derive 2 . 56.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This document was uploaded on 02/01/2008.

### Page1 / 176

Calculus with Analytic Geometry by edwards & Penney...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online