notes10

notes10 - CM221A ANALYSIS I NOTES ON WEEK 10 n times...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: CM221A ANALYSIS I NOTES ON WEEK 10 n times differentiable functions. We say that f is n times differentiable on ( a,b ) if each derivative of order up to n exists at every point of the interval (the derivative of order two is the derivative of the first derivative, the derivative of order three is obtained by differentiation the derivative of order three and so on). We say that it is n times continuously differentiable if the final derivative is continuous (the function and its first ( n- 1) derivatives are automatically continuous). If the interval is [ a,b ] then we require the one-sided derivatives of all orders up to n to exist at the end-points if the interval. The usual notation for the derivative of order n is f ( n ) , so that f ( n ) ( x ) = d d x f ( n- 1) ( x ). TAYLORS THEOREM Theorem (Taylors formula). If f is n times continuously differentiable on the interval ( a- ,a + ) then, for each h (- , ), there exists a point c lying between a and a + h (that is, c [ a,a + h ] if h is positive and c [ a + h,a ] if h is negative), such that f ( a + h ) = f ( a )+ f ( a ) h + f (2) ( a ) h 2 2! + f (3) ( a ) h 3 3! + + f ( n- 1) ( a ) h m- 1 ( m- 1)! + R m ( a,h ) , where R m ( a,h ) = f ( m ) ( c ) h m m ! . Proof. Let g ( x ) = ( x- a ) m and f ( x ) = f ( x )- m- 1 X n =0 f ( n ) ( a ) ( x- a ) n n ! . Note that the functions f and g and their first ( n- 1) derivatives vanish at x = a . Therefore, applying Cauchys Mean Value Theorem, we obtain f ( b ) g ( b ) = f ( x )- f ( a ) g ( x )- g ( a ) = f ( c 1 ) g ( c 1 ) = f ( c 1 )- f ( a ) g ( c 1 )- g ( a ) =...
View Full Document

This document was uploaded on 01/31/2011.

Page1 / 3

notes10 - CM221A ANALYSIS I NOTES ON WEEK 10 n times...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online