HW6-510-soln - AMS 510 HW6 Solution 9.25 (a) It is the...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
AMS 510 HW6 Solution 9.25 (a) It is the volume between z = 0, z = x y , x = 1, y = 0, y = 4 – x 2 (b) 1 2 0 4 x 2 x y dxdy (c) 1 2 0 4 x 2 x y dxdy = 241 / 60 9.27 0 a 0 b b a x 0 c c a x c b y 1 dzdydx = abc / 6 9.28 a a a a 0 x 2 y 2 1 dzdydx = 8a 4 / 3 9.32 { x y = u y = uv { u = x y v = y x y ,also { 0 x 1 0 y 1 { 0 u 1 0 v 1 , and ∂ x , y u,v = 1 – v –u v u = u then 0 1 0 1 x e y / x y dydx = 0 1 0 1 e v udvdu = e 1 2 9.33
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
{ xy = u xy 3 = v { 4 u 8 5 v 15 , then Area = ∫∫ dxdy = 4 8 5 15 ∂ x, y u,v dvdu = 4 8 5 15 1 2v dvdu = 2ln3 9.37 0 1 0 1 x 2 y 2 2 xyz dzdydx = 0 1 0 1 1 2 xy 4 x 2 y 2 dydx = 3 / 8 9.40 0 2 0 4 x 2 0 4 x 2 y 2 xyz dzdydx = 4 / 3 9.41 If we project the intersection curve of surface z = x 2 y 2 and z = 2 x onto the plane x-y, we can see the projected curve is x – 1 2
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 3

HW6-510-soln - AMS 510 HW6 Solution 9.25 (a) It is the...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online