Inverse_Laplace - 2 s +6 ( s 2 +6 s +10) 2 22. s 2 ( s 2...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
MAT 2384-Practice Problems on Inverse Laplace Transforms- Find the Inverse Laplace transform of each of the following functions. 1. 2 s +3 s 2 +9 2. 2 s +1 s 2 - 7 s +6 3. s s 2 +6 s - 7 e - 3 s 4. 3 s ( e - 2 s - e - 4 s ) 5. 2 s +1 s 2 +2 s +1 6. 2 s +3 s 2 e - 3 s - 3 s +2 s 2 e - 2 s 7. 2 s 2 +4 e - πs 2 8. 1 ( s - 1) 2 e - 2 s 9. 1 s 2 +8 s +25 10. 100( s +25) s ( s +5) 3 11. 1 s ( s 2 +9) (Use convolution) 12. 1 s 2 ( s - 1) (Use convolution) 13. e - 2 s s ( s - 1) (Use convolution) 14. 1 ( s - 1) 2 (Use convolution) 15. w s 2 ( s 2 + w 2 ) (Use convolution) 16. s ( s 2 + π 2 ) 2 17. 6 s 2 - 2 ( s 2 +1) 3 18. e - 2 s ( s - 1) 3 19. 3(1 - e - πs ) ( s 2 +9) 20. se - 2 s ( s 2 + π 2 ) 21.
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 s +6 ( s 2 +6 s +10) 2 22. s 2 ( s 2 +4) 2 23. ln s +2 s-3 24. s 2- 2 ( s 2 + 2 ) 2 25. 1 s 3 + s 5 (Use the transform of an Integral Formula) 26. 1 s 2 s-1 s +1 (Use the transform of an Inte-gral Formula) 27. 9 s 2 s +1 s 2 +9 (Use the transform of an In-tegral Formula) 1...
View Full Document

This note was uploaded on 02/02/2011 for the course MATH MAT 2384 taught by Professor Khoury during the Spring '10 term at University of Ottawa.

Ask a homework question - tutors are online