This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Rehman (aar638) HW04 sachse (56620) 1 This printout should have 21 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. 001 10.0 points The graph of f is shown in the figure 2 4 6 8 2 4 6 If F is an antiderivative of f and integraldisplay 8 2 f ( x ) dx = 21 , find the value of F (8) F (1). 1. F (8) F (1) = 93 4 correct 2. F (8) F (1) = 24 3. F (8) F (1) = 105 4 4. F (8) F (1) = 99 4 5. F (8) F (1) = 51 2 Explanation: We already know that the area under the graph on the interval 2 x 8 is equal to 21, alternatively, by the Fundamental Theorem of Calculus we can say that F (8) F (2) = 21 . On the other hand, integraldisplay 8 1 f ( x ) dx = integraldisplay 2 1 f ( x ) dx + integraldisplay 8 2 f ( x ) dx. Thus we need to find integraldisplay 2 1 f ( x ) dx = F (2) F (1) . Now integraldisplay 2 1 f ( x ) dx = integraldisplay 2 1 3 2 x dx = 3 4 bracketleftBig x 2 bracketrightBig 2 1 = 9 4 . Consequently, F (8) F (1) = 21 + 9 4 = 93 4 . keywords: velocity, distance, graph analysis, fundamental theorem 002 10.0 points Evaluate the definite integral I = integraldisplay 6 3 sin 2 x 4 cos 2 x cos x dx . 1. I = 3 + 4 2 2. I = 6 + 2 3 3. I = 3 4 2 4. I = 4 3 3 correct 5. I = 8 3 3 6. I = 6 2 3 Explanation: Since sin 2 x = 2 sin x cos x , the integrand can be rewritten as 6 sin x cos x 4 cos 2 x cos x = 2(3 sin x 2 cos x ) . Rehman (aar638) HW04 sachse (56620) 2 Thus I = 2 integraldisplay 6 (3 sin x 2 cos x ) dx = 2 bracketleftBig 3 cos x 2 sin x bracketrightBig 6 = 2 parenleftbigg 3 2 3 1 parenrightbigg + 6 . Consequently, I = 4 3 3 . 003 10.0 points Evaluate the definite integral I = integraldisplay 4 1 x parenleftBig 3 + 4 x parenrightBig dx . 1. I = 22 correct 2. I = 21 3. I = 24 4. I = 20 5. I = 23 Explanation: We first expand x parenleftBig 3 + 4 x parenrightBig = 3 x + 4 x , and then integrate term by term. This gives I = bracketleftBig 2 x 3 / 2 + 8 x 1 / 2 bracketrightBig 4 1 . Consequently, I = 22 . 004 10.0 points Evaluate the integral I = integraldisplay / 6 parenleftBig 3 cos 2 + 2 sin parenrightBig d . 1. I = 2 3 1 2. I = 2 3 + 1 3. I = 1 4. I = 2 3 2 5. I = 2 3 + 2 6. I = 1 7. I = 2 8. I = 2 correct Explanation: Since 1 cos 2 = sec 2 , d d tan = sec 2 , we see that I = integraldisplay / 6 parenleftBig 3 sec 2 + 2 sin parenrightBig d = bracketleftBig 3 tan  2 cos bracketrightBig / 6 = parenleftBig 3 3 3 parenrightBig + 2 . Consequently, I = 2 . 005 10.0 points Find the value of the integral I = integraldisplay 4 vextendsingle vextendsingle 3 x x 2 vextendsingle vextendsingle dx ....
View Full
Document
 Fall '09
 GOGOLEV
 Calculus

Click to edit the document details