This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Rehman (aar638) HW06 sachse (56620) 1 This printout should have 19 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. 001 10.0 points Find the most general function f such that f ( x ) = 8 x + 5 4 x 2 . 1. f ( x ) = 8 x 5 2 tan 1 x + C 2. f ( x ) = 4 x 2 + 5 sin 1 x + C 3. f ( x ) = 4 x 2 + 5 sin 1 x 2 + C correct 4. f ( x ) = 4 x 5 2 tan 1 x 2 + C 5. f ( x ) = 4 x 2 + 5 2 tan 1 x 2 + C 6. f ( x ) = 8 x 5 sin 1 x 2 + C Explanation: Since d dx parenleftBig sin 1 x 2 parenrightBig = 1 4 x 2 , we see that f ( x ) = 4 x 2 + 5 sin 1 x 2 + C with C an arbitrary constant. 002 10.0 points Determine the indefinite integral I = integraldisplay ( 1 x 2 ) 1 / 2 3 + 4 sin 1 x dx . 1. I = 1 4 ln vextendsingle vextendsingle 3 + 4 sin 1 x vextendsingle vextendsingle + C 2. I = 1 8 ( 3 + 4 sin 1 x ) 2 + C 3. I = 1 8 ( 3 + 4 sin 1 x ) 2 + C 4. I = 1 4 ( 3 + 4 sin 1 x ) 2 + C 5. I = 1 8 ln vextendsingle vextendsingle 3 + 4 sin 1 x vextendsingle vextendsingle + C 6. I = 1 4 ln vextendsingle vextendsingle 3 + 4 sin 1 x vextendsingle vextendsingle + C correct Explanation: Set u = 3 + 4 sin 1 x . Then du = 4 1 x 2 dx = 4 ( 1 x 2 ) 1 / 2 dx , so I = 1 4 integraldisplay 1 u du = 1 4 ln vextendsingle vextendsingle 3 + 4 sin 1 x vextendsingle vextendsingle + C . Consequently, I = 1 4 ln vextendsingle vextendsingle 3 + 4 sin 1 x vextendsingle vextendsingle + C . 003 10.0 points Determine the integral I = integraldisplay 1 8 + x 1 + x 2 dx . 1. I = 1 2 (4 + ln4) 2. I = 4  ln 2 3. I = 1 2 (4  ln2) 4. I = 1 2 (4 + ln2) correct 5. I = 4 + ln 4 6. I = 4  ln 4 Rehman (aar638) HW06 sachse (56620) 2 Explanation: We deal with the two integrals I 1 = integraldisplay 1 8 1 + x 2 dx, I 2 = integraldisplay 1 x 1 + x 2 dx separately. Now d dx tan 1 x = 1 1 + x 2 , so we see that I 1 = bracketleftBig 8 tan 1 x bracketrightBig 1 = 2 . On the the other hand, to evaluate I 2 set u = 1 + x 2 . Then du = 2 x dx , and x = 0 = u = 1 , while x = 1 = u = 2 . In this case, I 2 = 1 2 integraldisplay 2 1 1 u du = 1 2 bracketleftBig ln u bracketrightBig 2 1 . Consequently, I = 1 2 (4 + ln 2) . keywords: 004 10.0 points Determine the indefinite integral I = integraldisplay 3 t 3 1 t 8 dt . 1. I = 3 4 radicalbig 1 t 8 + C 2. I = 3 tan 1 ( t 4 ) + C 3. I = 3 4 tan 1 ( t 4 ) + C 4. I = 3 sin 1 ( t 4 ) + C 5. I = 3 4 sin 1 ( t 4 ) + C correct 6. I = 3 1 t 8 + C Explanation: Since integraldisplay 1 1 x 2 dx = sin 1 x + C , we need to reduce I to this form by changing t . Indeed, set x = t 4 . Then dx = 4 t 3 dt ....
View
Full
Document
This note was uploaded on 02/01/2011 for the course MATH 408L taught by Professor Gogolev during the Fall '09 term at University of Texas at Austin.
 Fall '09
 GOGOLEV
 Calculus

Click to edit the document details