Unformatted text preview: S 3 ∩ S 4 ∩ S 5 ( 29 Each of those possibilities is disjoint from the others, so the probabilities add: PS 1 ∩ S 2 ∩ S 3 ∩ S 4 ∩ S 5 ( 29 + P S 1 ∩ S 2 ∩ S 3 ∩ S 4 ∩ S 5 ( 29 + P S 1 ∩ S 2 ∩ S 3 ∩ S 4 ∩ S 5 ( 29 + P S 1 ∩ S 2 ∩ S 3 ∩ S 4 ∩ S 5 ( 29 + P S 1 ∩ S 2 ∩ S 3 ∩ S 4 ∩ S 5 ( 29 PS 1 ( 29 P S 2 ( 29 P S 3 ( 29 P S 4 ( 29 P S 5 ( 29 + P S 1 ( 29 PS 2 ( 29 P S 3 ( 29 P S 4 ( 29 P S 5 ( 29 + P S 1 ( 29 P S 2 ( 29 PS 3 ( 29 P S 4 ( 29 P S 5 ( 29 + P S 1 ( 29 P S 2 ( 29 P S 3 ( 29 PS 4 ( 29 P S 5 ( 29 + P S 1 ( 29 P S 2 ( 29 P S 3 ( 29 P S 4 ( 29 PS 5 ( 29 51.10 ( 29 4 .10 ( 29 = .33...
View
Full Document
 Spring '10
 Dunn
 Probability, Probability theory, The Samples, SSSS P SSSS

Click to edit the document details