# P0108_Soln - P0108_Soln.doc X boil20) ~ n a 5. i m ,4 (...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: P0108_Soln.doc X boil20) ~ n a 5. i m ,4 ( Recall that for binomial RV… EX= p n V [ ] nq a X=p r Thus, E ] n=0 X [ =p 1 V n = aX p 6 r =q S e[ ] 6 t vX= d Recall that… Xb mn)Y NteX ~n il , ≈~( X d ioa p E, v ) S ( P X ) P 0<< 0 a <b( 5 − + 5 ( < ≈ a . Yb .) Thus, X b oi ln ) Y N0 6 ~i m(, ≈ ~ 1 nap , P< <) P5Y1 ) 9 1≈ 8 . 1 5 ( X 1 ( <<. () P < 1 )P<.)P< ) 8 <. . 5 5 (1 5( . 5 ( Y 1 =Y 1 −Y8 Subtract mean and divide by standard deviation to get standard normal RV… 1. −0 8 −0 1 1 5 . 1 5 P . < <1 ) P < 8 5 Z − Z ( 5 Y 1. = P< 6 6 P < 1 )P< 1)P<.1) 8 <. . 5 5 (04 (− 4 6 6 ( Y 1 =Z . 2−Z 0 2 P < 1 )Φ1)Φ64 8 <. . 5 5 ( 4 (. 2 . 6 0 ( Y 1 =0 2−−1) Use standard normal CDF table (B&T pg 155), P5Y1 )Φ1)( Φ1) 8 . 1 5 0 2−− 0 2) . . ( <<. =(64 1 (64 P < 1 )0 9 ( 0 9 0 9 8 <. . 5 5 . 11 71 . 8 7 − ( Y 1 = 2− .2 = 5 )4 ...
View Full Document

## This note was uploaded on 02/01/2011 for the course BME 335 taught by Professor Dunn during the Spring '10 term at University of Texas at Austin.

Ask a homework question - tutors are online