{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

AEM2012_Exam1_Spring2008_Soln

# AEM2012_Exam1_Spring2008_Soln - AEM 2012 — Examination#1...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: AEM 2012 — Examination #1 — Spring 2008 Problem #1: A cannon is trying to hit a target on the top of a 100m tall building at a distance of 10km. The angle 9 that the cannon barrel makes with the horizontal is n/6. Neglecting air resistance, ﬁnd the speed V0 that the shell must leave the cannon at so that it will hit the target. " I A r 1+) = 15ml +Jlklé [L0320 ]“ ,{ 1 00m 9°“ V WWW) ”K“ M 3- .. D: A A A PB I L1 XE: N9; —3 -mcsa' = Ctxi+43§ -mﬁ w) a: = “x 1“ +3; l<€nzmcH ‘5 i v H db . “ " i z 0 ‘} I 7L kt) = (V031 5413 TWA =(\Ia)gt + Q ‘7 1. = _ LL}: _ 4: + v9 1: j ’3. 3Le3=-5£+ M)? #3 2.5) a): lax—HA} (MM-knits: Cﬂb~ banﬁ‘tnwd's, XIOX-JD av (i=0 K taun=o=x> D=o 1 5(10): (V°)X‘ Va (”\$9 ’ (3L0):- Kvol)‘3= Vosme HH’ TMayL Cec‘oh'xk‘vrsj ; “—— loo \00m 1. 5'9 (‘1 mtg) = was: =u9;n::s = -%;5i>; 4‘ V0435; 2 65m; 1',“ Ln gut/ﬂ = V0 Lose {:f = tokm, V0) 54 (1) => Va " “moo £4 case (3’3 P‘VS ‘31 ""i" “3 i 2. = age: 4. «w W) a = am «w fugue .. V1. i N {:4 a [mono Jame my] WI; __. 3%.Ol SewaA \/.> = “7mm 3’- 33““ 59- "/5 3‘1-Ol2ec (0580" __.____.__— AEM 2012 — Examination #1 — Spring 2008 Problem #2: A particle moves along the spiral shown where b is a constant. Determine the magnitude of the velocity of the particle in terms of b, 6, and 0. \$33 acmnman, x: r er + ré é“a , 1 3 .1. b .‘L ‘ \/V‘+~qe U Mud» r in 4mm: 01! E3639. Us: mama d-ﬁwnm‘m: ¢§ ’ 1. . ~£relztnj =4> ref-\— r9 =0 =§> @914. 2r99=0 Mr. ’? ‘i‘ producir) (Chain (HIKE, rule, . -Z~rsé ’ ' . Y‘ =‘ 1.. - _ zre =4 "’ 31.... ~19— : ~ gin—9 (13 9 e j 9 a” 9" r:‘°/91 mwa to.) {n40 m 1.01 K... \ Vt we» We - 4 “L : ______.._\, = W- '— 9‘” 9“ a“ ‘1 J- 4: 6'", qs . + v ‘79 cpl; Q n y 1| c" ——.. a .1: + <17 f' AEM 2012 ~ Examination #1 — Spring 2008 Problem #3: The mass of triangular shape A is mA = 25 kg, the mass ofblock B is m,» = 20 kg. The surfaces between mass A and mass g l B, and mass A and in the incline are smooth with zero friction. The system is released from rest. If 9 = 45°, compute the vector representations of the accelerations of masses 1:, Incline AandB. Kinemwlics: 9A?- an (“59“ +9493) ’— 0. 3 I" . _ NB/A 084‘ J C13" Ctn" QB/A ‘3 (‘3 mm ya: NA'L~\$§n91+wSG8) N” ‘6 2 F1 ‘3’ ”A9053 - N3 "W‘A‘g = moan 5M9 (2-) Ugh: NA) a“) N8 F (Q23)! B: Y X -.- O = O QQS'MQ +CL3/A :0 A 0 Beta.“ U“): (Qua; :. 0.“ 0:59 1 + an Sinﬁg + (lg/A ‘i 0“ ’ Lag):— CLASCAQ (a) ‘l %olve m am): (oJoaMora emailed) ...
View Full Document

{[ snackBarMessage ]}