M122F07A3 - Math 122 F01 and F02 2007 Assignment 3 Due:...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Math 122 F01 and F02 2007 Assignment 3 Due : Friday, November 16, 2007, in class, before the lecture starts. Mathematical induction is a useful proof technique that every mathematician and computer scientist should know. The point of this assignment is to practice proofs that use this technique. Each induction proof must contain four parts: the Basis, the Induction Hypothesis (explicitly state what is assumed), the Induction Step, and the Conclusion. 1. a) [4] Let b 1 be an integer. Show that if n b and b n < n ! then b n +1 < ( n + 1)!. b) [3] What is needed to complete the proof that for any positive integer b we have b n < n ! for all large enough integers n ? Is this true for every positive integer b ? Justify your answer. (Hint: try looking at what you have when n b 3 .) c) [5] Prove that for all integers n > 7 we have 3 n < n !. 2. [8] Prove that any integer i 8 can be written as a sum of 3’s and 5’s. 3. [8] Notice that:
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 02/05/2011 for the course MATH 377 taught by Professor Stephenlang during the Spring '11 term at University of Victoria.

Ask a homework question - tutors are online