M122SecF02Test3key - l‘viat‘nematics 122, Section F02...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: l‘viat‘nematics 122, Section F02 Test 3 December 28, 2007 Last Name, First Name: 7 Student: Number: lnstructor: M i Schurch You have 50 minutes to complete this test, The only calculator allowed is the Sharp ISL—.510 R. (But no calculator needed!) Do not simplify your EmHVffifI‘S. In each case to receive any credit at all you must show enough work that it is possible to determine Where your answers came from. J. State vheztther each of the following is line or l’alse. DUPOH'IAN'FI‘: Each correct response is worth one mark, each incorrect response is worth —?; of a mark and if a question is left blank it is worth zero. lt is possible to score less than zero on this question. Let f : Z'* —> R and Ar] : Z+ a) R. (a) ,Jjflggm li' E Elk/(71)) then 9(71) 6 (St/(Til) (d) ___EJ5'LW 32007 E l(lIlOd «Mo ((3) MELALW list a, b e: Z”. ll lcrrfiai 3,4 ‘lc their gcilhrj) 7.4 l. 1‘ Caruijtlwx. 2i [3] Let (1.7[370 e Z Prove that if (rib and oil’brl c), then ale, guppm at”; amok at! 00%)» Time warm Obi la+c:cc~m mum who é2_ 7L9» bu, “WWW :7 0'”*C :aiv‘“ =7 L; arm' GL-KL :j C :0t(m"\—) JIMLH VH“V\ =7 ale. 3. Let a.., b, C E Z and n E Z“? Prove that if a E b(mod n); then ac E bc(mod n). Suppma CLE‘O (“ax”) TL“. “I (“40> :7 RICCR‘E’) C E g 2 I‘LIchcla z QC‘IOL C E '06.. (VAN/gm) : 0L Al, (21) Use L110. Eudidean algoriUnu L0 dctenuine g<"<1(z:192,154). 2 7‘ ~ 50 ‘ r s w 5 + q 50 z 7* f1 Lt 14% ficiO/tcll) SW): 3* (h) [2] Determine integers :r: and y such that 492:1; 154:4, :: gem/492154). 1 2 so - ?- Li 2 BO «105% 530) {who} _ 4cm) : BQDWLI— 346% ~ 7R4“) 1 (390ml) r (413)030 5. Use the definition to prove LhaL 1072f“ ~ir 5"" ~‘r 1} is Om,“ 125C, (in?!) a: 67 Mon," +5“ H! = lan“‘+5“+tf ,\7n3’ $ 10%“ +r{‘+4“nh Vnzs é Iann [Er/“35.. 6, 1L3} Use the definition to prove that 2n2 ~+ 3n is not C(71) \ A ‘ t ,u + badger/x Hm IS ‘ ‘Leh me‘l and; m C: '2 MK [4‘ (3 Z: I '3“ka \AAVQI 5 m.n ) \ffl 2 [RbSyll/Vt‘ vale—z I‘s hV+ Madam SN”? [OL'H‘ 3 . i m i ‘7“ ’l/‘ CLN \0L«S'\“\\L\ C13 nim€_ I VnZl‘ 77 1n ( ( i'. The Fibonacci numbers may be defined recursively by , 1‘0: \KJ [255 {Low- 64 {\3 1., F; I J and for integers n 2 Fri—1 fin—2- r\ (I) 1]] UP'tPrminE? Fa, @23 b) [4] Use mathematical induction to prove F“ > (ié‘fi')'“"" % 7 case you do not; have your calculator; (‘3)5 : 7.593751 ‘ {5m mus, 1615(4) FU:§ 7 L: 69?) FT: l3 WiMom’ {£9 for ad] r: I?» 6. marij (Just in gar 30M 14 2 _/ 'SVHSk \mx) ‘1 \ "r FK_‘ C Hm Mum'in oflmbv» 0‘ FW> -\ Vi-l ‘ . 705‘ 4%.) U33 iL I H) E, W 8. [2] Find the general solution for the. recurrence relation an : Saw] — 2cr.n,g., n 2 2. a“ * 3am Mini: (7 (b) Solve the recurrence relatdcn a,1 : CLO ,_ an ‘ 1(er Swnger‘: (REP): (‘VL C wer Cc-vaanA’)‘ 01830:} \l/vk‘C’ \ 1! pr, ilk 6‘- V\ K W WNAA a 89m: SUIWLCO'N a,» vbaw-I + Jami :5 Saw] — 21:17]“? + 5, n 2 27 a0 : 0,0,1 : 3 /-\-;L“ H5 «Cr-m axiom. 803 is a. j N h H4 (“Whig/(Mons W.V.> WL- “400‘” “rib-1(va =5 M4M 'r3lr +7):ka “LN/r :5 c V5-5 mph—3n. Zj)aw’;%im’-SV\‘<K n In .A“Mu.n A v "m .M A ‘ -“Lfivh- ‘ A1 :1. [1L] Dettuulm: the mmle UlL buugmph « 1 00 & m5+<1>r+ <1) 2“ I . 7/. ,[Lg‘ 10. [3] Let T r (V, E) be a tree with 7 vermies of ('iegree ‘2 or more. If the sum of the degrees of the 7 vertices with degree ‘2 or more is ‘23. dem-rminc the number of vertjces of degree 21 in T. W[ 2 A aux [A [1» H: Raj; WV‘LMS A ...
View Full Document

Page1 / 5

M122SecF02Test3key - l‘viat‘nematics 122, Section F02...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online