第六章-关系-ä&sup1

第六章-关系-ä&sup1

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
R 6 1 X 1 Y 1 S 1 1 1 1 X={0 1 1 1 2} Y={0 1 2 1 4} 1 S={ < x 1 y | x+y X Y} 1 2 1 X={1 1 2 1 3 1 4 1 5} 1 Y={1 1 2 1 3} 1 S={ < x 1 y | x=y 2 1 x X 1 y Y} 1 1 1 1 S={ < 0 1 0 0 1 2 2 1 0 } 1 2 1 S={ < 1 1 1 4 1 2 }
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2 1 dom 1 P Q 1 =dom 1 P 1 1 dom 1 Q 1 I x x dom 1 P Q 1 1 y 1 1 x 1 y P Q 1 ⇔5 y 1 1 x 1 y P ∨< x 1 y Q 1 ⇔5 y 1 1 x 1 y P 1 1 y 1 1 x 1 y Q 1 x dom 1 P 1 1 x dom 1 Q 1 x dom 1 P 1 1 dom 1 Q 1 1 dom 1 P Q 1 =dom 1 P 1 1 dom 1 Q 1
Background image of page 2
3 1 R 1 S j I . R S 1 j 1 R 1 S 1 A 1 R 1 S j A I x 1 1 x 1 x R 1 1 x 1 x S 1 1 x 1 x R S 1 R S  ≠ ♠ 1 R 1 S 1 x 1 y < x 1 y R S ⇔< x 1 y R ∧< x 1 y S ⇔< y 1 x R ∧< y 1 x S 1 R 1 S ⇔< y 1 x R S 1 R S
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
R 1 S n 1 x 1 y y 1 z < x 1 y R S ∧< y 1 z R S ⇔< x 1 y R ∧< x 1 y S ∧< y 1 z R ∧< y 1 z S 1 1 1 x 1 y R ∧< y 1 z R 1 1 1 1 x 1 y S
Background image of page 4
Image of page 5
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 02/06/2011 for the course CS 343 taught by Professor Zhoujunli during the Spring '08 term at BUPT.

Page1 / 15

&ccedil;&not;&not;&aring;…&shy;&ccedil;&laquo;&nbsp;-&aring;…&sup3;&ccedil;&sup3;&raquo;-&auml;&sup1

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online