AK-MATH225F10-WS3

AK-MATH225F10-WS3 - MATH225, Fall 2010 Name; or Worksheet 3...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH225, Fall 2010 Name; or Worksheet 3 (2.1, 2.2, 2.3) Section: 6:9! UJCIO/ls For full credit, you must show all work and box answers. 1. (a) Match the following differential equations to their direction fields. (All the direction fields are graphed for —3gtg3,—3syg3.) i. d_y_t (1) fil$§=7¢éfl glop; Marks odor») chLTTZ-‘Al “4:3 Ach dt — ii. 53%:3/ __B____ Lil) £27; 5(0/¢\ Ark/L5 A104} [flogged-ta] iii. d—y —ty & ll «65 «a. paralklv d25— (ZZZ/3%f/C'T) :O / Slopc, Mafkfi hofiéon‘ée\(7‘£ iv.@=(t—2)y ' 9:5 5:0 :3!” :CD dt Liv tag": fidofc mwés Aefléontanf 7th 1 (B) bLZ/ .\\\\ \\\‘ \\ \\\‘ \ 1 \\‘\\\ \\\.\\ \\\~_.‘\~. \\\\~‘~«~. i\\\‘\\\ \\\\\\\’ \\\.\\\\ )\\\\\‘\ l“ V n , . I v%~/—.~4+—f~wi—4—-l-+%~+-\-~ "///ff «“///’/ "r’f/‘/,’/I ,////,//i ,v ‘\ \ \\\ \\\\ ‘\\\\\\ \\‘x\\'\\ \\\\\\ x \ i\\\.\\\.\ '«\‘\‘\\\\\ \\\ \\\\ \\'\\ \\‘\] \\\ \. \ .\\ \\\\\\\ \\\\\\\ (b) On graph (A), sketch an approximate solution curve passing through the point y(0) = 1. $64 A hex/C. 2. The following differential equation maximum amount the environment can sustain. (a) Sketch the phase line (portrait) and classify all of the critical (equilibrium) points. E1 1 7’1 I, :O E? SJC‘L’C / [or ’\ H“f~¢.fd; of" filfik) , a 17. _-.—,» :B' onDL‘LblL ~7Z——""' Car fcpcllcf, or' 500'24.) A 4 0 7% l 754 at: I > O J t y?! 3% ( yrc LO . (b) Next to your phase line, sketch the graph of solutions satisfying the initial conditions: 31(0) = 2, 31(0) = -1, 31(0) = 5 74(1) = 11. (c) Find tlim y(t) for the solution satisf i t e inital condition y(0) = 2. —’00 TM E. '5 3. Given 3—: = ——1 + cos(y), (a) Sketch the phase line (portrait) and classify all of the critical (equilibrium) points for in g y Sjm F V '2’ ' 27137] 56m? strip/c ————~- \ +C657 r Lor‘ flbvlé) 6°37 3- l Zo/j; . . Oz7/éém1-5EKLIL 7 (or— ’709’6) ,t : - “Z. 40 231% l 7 : *TT’ 240 ‘5 l7:37f (b) Next to your phase line, sketch the graph of solutions satisfying the initial conditions: 7r 4. Solve the following differential equations or initial-value problems by separation of variables. Put your solutions in explicit form. g, 2:... L‘ i : A‘é g 25X Jx / #0, 7:0 7: WWMWMWM 7 Cams tint 59/96:») z _x_. 5 +6 6, a 5 lyl =¢é s a. L a 7:1aes //}::¢/O 1» 2 (b)%;=x:t3x, x(0)=—2 Ax __. 1,2 t MW?) - L WM” 3 worrm=~2 5. Solve the following differential equations or initial-value problems using the Method of Integrating Factors. Put your solutions in explicit form. dy —5t (a)E—5y=3e —$(: vlot g 1836/ Jf ‘51: V 3% +(~S)>’—5c ' _ _O 5.9% ~51~ 66%} = i C! t+C_ xult):6 > ’0 C 5% +695): 7 - 3:: 63 7 r ’0 C Ct: < ‘Slv >/ __ C:|Dt WW 6, 7 ' d 2t (mg—gteee t>c> _L’:Z_ t Lt 4’1 C. ox _ w L» at 3 ‘ C ’ 26 ‘1“ 7f, 1% :i- — Zia t .t / ‘ L-t at M” J? = 32260 alt _L_/i_ (JV t 7 if: + é’t 12$ 1:636 (c) (x+1)% +y=1n(x), y(1)=10/ >90 0 \ jézb & _I\ :Q'ay )zxéax-erC 3:)? + 7”" y X-H yéx X-I—I S Walk Zn) xw) an am 0 “MC NCV)'—’6 :8 ;@ Ix+t 7L1): Z =10 X50 _ >42 . Q v>+c~a3 (Mi M +; -; ax Q>;) LLX+0j>I :QAX (KH) 7; 32" X‘JX URQWIX Agra” .. \s ._ (X‘il> 7:X’€AX—SJX AU'§JY§V"X ZX+137=><Zoxvx~rC ...
View Full Document

This note was uploaded on 02/08/2011 for the course MATH 225 taught by Professor Staff during the Fall '08 term at Mines.

Page1 / 4

AK-MATH225F10-WS3 - MATH225, Fall 2010 Name; or Worksheet 3...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online