{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

AK-MATH225F10-WS9

# AK-MATH225F10-WS9 - MATH225 Fall 2010 Name 0 7o...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH225 Fall 2010 Name: 0] 7o Worksheet’9 (7.3, 7.4, 7.5) > Section: é Ut “5 For full credit, you must show all work and box answers. 1. F' dth Ll t sfo ofthefollo inf t‘ . U th tbl. V \ 1n e apzace ran rm W g unc1ons ( se e a (Mr ﬁlo Ora, ?Cb) t—SI'QCZIE)> (a) ggt>=t sin<2t> : awarded) _ D l u ) ‘ H H1nt: Formula 10 #:10/ 4,4 / get) = E5?” (at)/ pés) _: C 12. 52 Z 1 S fFHL} _. :; l "'l 5 5 +2 51+”): GL9) — 5 77503 C") 2? (m) L , M q cama— Lr'sfaﬂzsﬂszﬁ) ) “’qu _] Ll (X 3 2 > z a _ L_ a ‘ . ~ :> M (b) f(t)=e2“U(t—3) —“~ (st) ( ‘lw Cs +5. ls : S; )5 Caz 1" "llJu‘r‘B' MC + H FLS) ; S 29(11): / #H/ 01>}, W Ct) :ETEWMZ??S = 62 ‘5 ﬁg) ? / 7 J ._ ~35 1-093) -6. Sgeﬂ 5 ,. '35 _,t ' =635§fie E ‘66; §Z¢§7L '— (c) f(t)=(3t+1)U(t—1) wwi_510~:jﬂwm M PCs) = 529%): ’ FFl‘l/a‘el, 7H,) 736%., Lt+l)¢ 3Zt+z>+l =Bt+k1 ‘5 t C, 323157?le -3 ‘5 i i m‘SEBgztg+-Lzsan”i] = c [SKS‘LBWls'ﬂ c sz‘rsl (d) 9“) Z { sin(t — 2707 t 2 27r Hint: Write g(t) in terms of Heaviside functions ﬁrst. 7&2) Ll + uétirr) Csl‘nCé-Z rr) — I] :1 f + Dﬂt;Zﬁ')\Slol£’ZT/l'vﬂ’5§ 4‘ , #Iz ZFFM/oPZ—‘tr ) ‘ : Lt ‘ Lt) =5 (\nC‘t‘ZTi @Le) 32; gm Ms . gag“) 1.5M z—é—kc 52\$Mﬁ3‘gb V \ '2’”5 + ._ ZTZTTS ——J E +c 5 ‘H S W (e) h(t) = t * e3t Do not evaluate the integral before transforming. H5) “’3 {tea} : git} i 2513/ fab/e : {Li’s—3) t #L‘i/AH / #35: (f) h(t) = / sin(’r)d‘r Do not evaluate the integral before transforming. 0 Pitt): l}k élﬁéé) l—Hs) : game): = 33/3 Sislnig j a»; :t‘é‘)(s:|+l) 3‘ ‘ , .3, L I H» "K, £9 :3 2. Find the inverse'La lace trjansform of the following. :Cgsgg 42 G . g C (a)F(s)=32fs—1) :CS<; +5.2? 413‘! PF; (dais-1) +8 (57/) +Cg—z) Mm); + L'A+B)s + (95):! A rape: -/+ +3 no -13 .3. ; Czar-4;! 5’52...) (his) :52i25+5 — (:35(5?":Zs+5) 6Z+Zs+ ‘3; EZ’LLKC:(2)2’H(I>CS) 1—0, Do Fm! Packers 9.2: gnaw; =SL+ZS+Z“§)§5=(EZ)£ :49» :H whyuﬂ (9) z 2 "L '55( a???) i'ééwﬁ ‘c'bswaa WWW 1‘93 #I? - <‘ V ' “b ) W [?Lt) ; E ‘ZGLQE ‘J 6, C EﬁwéZZvué-B) 2 09/3 3.““Fi§iﬁ"t"ffé"iﬁ?€f§e Laplace transform of F(s) = m using: (a) Partial Fractions Fla) : (5—057‘2) 3—! + 572, 3 :J) ST; LE: Hés+a>+éésrll=~l 3/ CFbGV'Z WW7 “2'6: , m o \ :y : r'J‘ _ 5 a: Ems): aw) a go 6 T: l .’ B A ;. I / ﬂ :7 3' «W, n _ “— (b) The Convolution Integral - "aé t— l _u_. _._ PKS) 1’ ( s: / f-l : G / g Zea—r; a a»; ~?(Jc)=§“%/P(s): 2 ohm: , 75% t —»z .13?) :80 ate, ( AT ‘9 t it 31‘ a g at a; o\ L ’80 6 CL CAL - 3.} a‘: i: _ ~Lt .L :2 alt ‘2}; 6/ 6 -’ a ‘ (B t 4. Use the Laplace transform to solve the integral equation f (t) =Qt+ / 7' f (t — 7-)d7' 0 S 24063.3:- iid—“E + \$29k HOE, PF: P ( _ " #32416 " #:le Amywsﬂ) k6[\$+0+US'0 {57’ S) ’- 4— géiigiﬂxﬂf 4(52-0+615r‘-/3-1‘CL§L'L:+/)=sz TH: H IP‘ 2 I / 4+5) + (8 vac/)5 +(~4+8+¢) 17(3): (34, 4* 5’; F43) L’ )3 =51 \ _ xj_ (Jr—kcg) grave ~4+8~+¢=~wo 1:5) —;;F(S) .’ 64 4:;4, g=ac ~n+c+zc+c-o ‘ p ﬂ 33>. &=ZL C.=T.Lr — *7 i , ‘1 PCS) C ) 5 > '6 I“ +£BA=I l=¢=l|,q.=l’n; ~ 1'. B E ' ,_L 4 PS) (5:; > 5." 7:15)“ Hzgﬁ+bésﬂb> - \$2— _ M31 w— H) P (5) ' (5-01524) / (5-043!) PM _4 e) .C. :75; m ’zi {3 —L,JC+—L‘t Pb) ‘E—T +[s—n)"f 6+! {swtba'Cﬁ/D ‘Péa "t 6’ “Late Lia...“ 5. Solve the initia1~va1ue problem: y’+y= f(t), y(0) =0, f(t) ={ E1 of; f 1 6. Solve the initial—value problem: y” + 4y’ + 13y = 6(t — 77) + 6(t — 371'), y(0) = 1, y’(0) = 0. 527”; “FHSZ; [35573 :.g§<§év’:“17')§ Jr Si§¢f'377)§ 3 it 20, 01:77‘ #zo,a:377~ SW63) «57(0) 7 «a; +5. [5 was) vygagl—HB ﬁg) g {mam 5W5) *5 HS 7’63) 4+ +5 W5) =6“; *3“ c; Z 5 u. S +L15 +L5) :: 54H + 6W3 kagT‘rS 3+ ,Trs l , k) — Ens I \ S V X I ( ) ésZ+Hs+/s) +6 sawsﬂs h: \$L+L43+/3) §Z+Hs +13 ; EZ’Hqc =(+H)EL;(;)[/3)<o £2; 51+L13413 = sz+L~L5+[*i§€)L+~/3~/*—§)z : ( 3%) 2+ O1 ‘ . ’ 5+9 ~T7‘S / I 'B‘n‘S I H)[S > “ ("Sivajaﬁrﬁ 4rd (sq—3)???) +6 C 5+2)L7‘"i\> :___5_i§_“_._.23>l"rr53 ,L’BWSB 82(5) Cs+a)a+ﬁ + :3 (,SQF-r‘ﬁ +5 C/ [sq—ZY'FJJVB C [csﬁfﬁ - 5 + Z , \ v1 3 __ ‘29. x g ‘ (5+zja-H E W Cities ( 31) E Z¢s+a)z+c1‘§ *' C, «5 I"? Z 31) H:(3/q=3‘2./L33 Fr‘L/a/q;a/ Lsﬁ3 ’ ~ ~ +; — 4-; x 3 Ct) ; cg ’ : C CoS(3JC) +% a; 5/ 7 F": / 6‘: (7 +3; uLJc—w) éaLt-W)s7ol3éf‘ﬁ)) 2, ) } ov>377~ + “'3 U (5317) [utmgv :5} 0L3 (i.'BT/")> L. _ __ ., ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 4

AK-MATH225F10-WS9 - MATH225 Fall 2010 Name 0 7o...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online