{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}


Vibrations232 - T%Dry friction force figure(2 Fd = sign(dx...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
%% Problem 2.32 (Ehsan Mohammadi) clc;clear %F(dx) = c*dx (2.46) %F(dx) = u*m*g*sgn(dx) (2.52) %F(dx) = cd*dx^2*sgn(dx) (2.54) %F(dx) = k*pi*Bn*sgn(dx)*abs(dx) (2.57) %For all of the cases we devied both sides of the functions by the %constants so that the function is normilized. % t=0:pi/100:2*pi; x=(0.4)*sin(2*pi*t); dx=0.4*2*pi*cos(2*pi*t); d %Viscous-damper force figure(1) Fv=dx; plot(t,Fv); axis([0 6 -3 3]) xlabel('Time') ylabel('Force') Title('Viscous-damper force')
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: T %Dry friction force figure(2) Fd = sign(dx); plot(t,Fd); axis([0 6 -1.1 1.1]) xlabel('Time') ylabel('Force') title('Dry friction force') t %Fluid-damping force figure(3) Ff=(dx/abs(dx))*dx; plot(t,Ff) axis([0 6 -.15 .15]) xlabel('Time') ylabel('Force') title('Fluid-damping force') t %Hysteretic force figure(4) Fh=abs(x)*(dx/abs(dx)); plot(t,Fh) axis([0 6 0 .018]) xlabel('Time') ylabel('Force') title('Hysteretic force')...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online