FDWKCalcSM_ch8

# FDWKCalcSM_ch8 - 350 Section 8.1 51. y = sec 2 x , so the...

This preview shows pages 1–4. Sign up to view the full content.

350 Section 8.1 51. ′ = yx sec 2 , so the area is 21 2 2 0 4 π tan sec , xx d x () + which using NINT evaluates to 384 .. 52. x = 11 2 1 1 1 22 y x y y y and so thearea is ′=− +− , 2 1 2 dy , which using NINT evaluates to 5.02. 53. (a) The two curves intersect at x = 1.2237831. Store this value as A. Area = (s i n s e c ) 2 1 366 0 = d x A (b) Volume = i n )( s e c ) 2 16 404 0 = d x A (c) Volume = i e c ) 2 1 629 2 0 = d x A 54. (a) Average temp = ≈° 1 14 6 80 10 12 87 6 14 cos . t dt F (b) Ft t cos =− 80 10 12 78 for 5 2308694 18 766913 . ≤≤ t Store these two values as A and B . (c) Cost 005 80 10 12 78 5 10 . cos . t dt A B The cost was about \$5.10. 55. (a) 15600 24 160 6004 2 9 17 tt dt −+ people. (b) 15 15600 24 160 16 2 9 17 2 ( dt + 0 104 048 17 23 ) , dollars (c) =−≈ HE L () () () 17 17 17 380 people. H (17) is the number of people in the park at 5:00, and H 17 is the rate at which the number of people in the park is changing at 5:00. (d) When =−= Ht E t L t ; 0 that is, at t = 15.795 Chapter 8 Sequences, L’Hôpital’s Rule, and Improper Integrals Section 8.1 Sequences (pp. 435–443) Quick Review 8.1 1. f 5 5 53 5 8 == + 2. f −= 2 2 23 2 3. −+ − = 231 1 51 ( . ) 4. = 751 35 ( ) 5. 15 2 12 41 .( ) = 6. 215 45 31 (. ) . 7. lim lim x x →∞ + + 52 6 5 3 0 32 42 3 4 8. lim sin( ) lim x x x x →→ 00 33 3 9. lim sin lim x x x x = = 1 10. lim . x x x x + + 2 1 2 3 Does not exist, or Section 8.1 Exercises 1. 1 2 2 3 3 4 4 5 5 6 6 7 50 51 ,,,,,; 2. 2 5 2 8 3 11 4 14 5 17 6 149 50 ,,, , , ; 3. 2 9 4 64 27 625 256 7776 3125 2 48832 ,, , , . , 117649 46656 2 521626 51 50 2 691588 50 ., . 4. −− 2 2 0 4 10 18 2350 , ,,, , , 5. 31 1 3 11 ,, , ; −−− 6. 0 1 5 ,, , ; 7. 2 4 8 16 256 ,,, ; 8. 10 11 12 1 13 31 19 487171 10 1 1 7 , , ., . ; . (.) 9. 112321 ,, ,; 10. 32 112 11. (a) 3 (b) ad += + = 72 7 3 1 9 (c) aa nn =+ 1 3 (d) an n n =− + = 3 3 5 ( ) 12. (a) 2 (b) +=+−= 71 5 7 (c) 1 2 (d) n n =+−−= 15 1 2 2 17 ( ) 13. (a) 1 2 (b) + = 7 1 2 9 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Section 8.1 351 13. Continued (c) aa nn =+ 1 1 2 (d) an n n =+ − = 11 1 2 1 2 () + 14. (a) 0.1 (b) ad += + = 73 7 0 13 7 (.) . (c) 1 01 . (d) n n = + 3 1 01 29 ( . ). . 15. (a) 1 2 (b) 8 1 2 0 03125 8 = . (c) = 1 2 1 (d) a n n n = = 8 1 2 2 1 4 16. (a) 15 . (b) ()(.) . 1 1 5 25 6289 8 (c) = 1 (d) a n == −− 115 17. (a) 3 (b) , −= 3 19 683 9 (c) =− 3 1 (d) a n =− − 33 3 1 18. (a) 1 (b) ( ) 51 5 8 (c) 1 (d) a n n 51 1 19. 72 3 3 = a 1 23 5 =− − =− n 1 32 for all 20. = 35 4 2 a 1 52 41 3 =−− = ( ) n n =+−−= −+ 13 1 2 2 15 ( ) 21. r = = 3010000 3010 10 / a 1 3 3010 10 301 . n n =≥ 30110 1 1 .() , 22. r = = 16 12 2 / / a 1 2 14 = = / / n () ( ) , 1 23. [0, 20] by [0, 1] 24. [0, 20] by [–1, 1] 25. [0, 20] by [–5, 5] 26. [0, 20] by [0, 10] 27. [0, 10] by [–25, 200] 28. [0, 10] by [–5, 30]
352 Section 8.1 29. [0, 20] by [–1, 5] 30. [0, 10] by [–15, 10] 31. lim lim ( ) lim nn n n →∞ →∞ →∞ + =+ == 31 3 1 30 3 converges, 3 32.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 09/26/2010 for the course MATH 135 taught by Professor Noone during the Summer '08 term at Rutgers.

### Page1 / 28

FDWKCalcSM_ch8 - 350 Section 8.1 51. y = sec 2 x , so the...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online