{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

20082ee131A_1_HW6SOL

# 20082ee131A_1_HW6SOL - EE 131A Homework#6 Solution Spring...

This preview shows pages 1–2. Sign up to view the full content.

EE 131A Homework #6 Solution Spring 2008 K. Yao 1. a. Start by using integration by parts to perform 0 f S ( s ) ds = 1 , where one can take u = s and dv = s exp( - s 2 / (2 σ 2 )) ds. Then a = 2 σ 3 . b. We have s 2 = 2 x/m or s = 2 x/m. Thus, f X ( x ) = f S ( s ) | dx/ds | s = 2 x/m = 2 x/πm exp( - x/ ( 2 )) σ 3 , 0 < x < . 2. a. P [ X > 4] = 1 - F X (4) = 1 - Φ( 4 - 5 4 ) = 1 - Φ( - 1 4 ) = Φ( 1 4 ) = 0 . 598 P [ X 7] = 1 - F X (7) = 1 - Φ( 7 - 5 4 ) = 1 - Φ( 1 2 ) = 0 . 308 P [6 . 72 < X < 10 . 16] = Φ( 10 . 16 - 5 4 )Φ( 6 . 72 - 5 4 ) = Φ(1 . 29) - Φ(0 . 43) = 0 . 235 P [2 < X < 7] = Φ( 7 - 5 4 )Φ( 2 - 5 4 ) = Φ( 1 2 ) - Φ( - 3 4 ) = 0 . 465 P [6 X 8] = Φ( 8 - 5 4 )Φ( 6 - 5 4 ) = Φ( 3 4 ) - Φ( 1 4 ) = 0 . 175 b. P [ X < a ] = 0 . 8869 Φ( a - 5 4 ) = 0 . 8869 = 1 - Q ( x ) Q ( x ) = 0 . 1131 x = 1 . 21 = a - 5 4 a = 9 . 84 c. P [ X > b ] = 1 - Φ( b - 5 4 ) = 0 . 11131 Q ( x ) = 0 . 11131 x = 1 . 22 = b - 5 4 b = 9 . 88 d. P [13 < x c ] = 0 . 0123 Φ( c - 5 4 ) - Φ( 13 - 5 4 ) = Φ( c - 5 4 ) - Φ(2) = 0 . 0123 Φ( c - 5 4 ) = 0 . 0123 + 0 . 9772 = 0 . 9895 Q ( c - 5 4 ) = 1 - Φ( c - 5 4 ) = 0 . 0105 c - 5 4 = 2 . 3 c = 14 . 2 3. a. F Y ( X + N y | X = +1) = F N ( y - 1) F Y ( X + N y | X = - 1) = F N ( y + 1) f Y ( y | X = +1) = f N ( y - 1) = 1 σ 2 π e - ( y - 1) 2 2 σ 2 f Y ( y | X = - 1) = f N ( y + 1) = 1 σ 2 π e - ( y +1) 2 2 σ 2 b. f Y ( y | X = - 1) P [ X = - 1] > f Y ( y | X = +1) P [ X = +1] decide ”0” 1 σ 2 π e - ( y +1) 2 2 σ 2 (3 p 1 ) > 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}