{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Image Estimation By Example

Image Estimation By Example - IMAGE ESTIMATION BY EXAMPLE...

This preview shows pages 1–6. Sign up to view the full content.

IMAGE ESTIMATION BY EXAMPLE: Geophysical Soundings Image Construction Multidimensional autoregression Jon F. Claerbout Cecil and Ida Green Professor of Geophysics Stanford University with Sergey Fomel Stanford University c February 2, 2011

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Contents 1 Basic operators and adjoints 1 1.0.1 Programming linear operators . . . . . . . . . . . . . . . . . . . . . . 3 1.1 FAMILIAR OPERATORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Adjoint derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.2 Transient convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.3 Internal convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1.4 Zero padding is the transpose of truncation . . . . . . . . . . . . . . 11 1.1.5 Adjoints of products are reverse-ordered products of adjoints . . . . 12 1.1.6 Nearest-neighbor coordinates . . . . . . . . . . . . . . . . . . . . . . 12 1.1.7 Data-push binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.1.8 Linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.1.9 Spray and sum : scatter and gather . . . . . . . . . . . . . . . . . . 15 1.1.10 Causal and leaky integration . . . . . . . . . . . . . . . . . . . . . . 16 1.1.11 Backsolving, polynomial division and deconvolution . . . . . . . . . 19 1.1.12 The basic low-cut filter . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.1.13 Smoothing with box and triangle . . . . . . . . . . . . . . . . . . . . 22 1.1.14 Nearest-neighbor normal moveout (NMO) . . . . . . . . . . . . . . . 24 1.1.15 Coding chains and arrays . . . . . . . . . . . . . . . . . . . . . . . . 26 1.2 ADJOINT DEFINED: DOT-PRODUCT TEST . . . . . . . . . . . . . . . . 28 1.2.1 Definition of a vector space . . . . . . . . . . . . . . . . . . . . . . . 28 1.2.2 Dot-product test for validity of an adjoint . . . . . . . . . . . . . . . 29 1.2.3 The word “adjoint” . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.2.4 Matrix versus operator . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.2.5 Inverse operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
CONTENTS 1.2.6 Automatic adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 Model fitting by least squares 35 2.1 HOW TO DIVIDE NOISY SIGNALS . . . . . . . . . . . . . . . . . . . . . 35 2.1.1 Dividing by zero smoothly . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1.2 Damped solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.1.3 Smoothing the denominator spectrum . . . . . . . . . . . . . . . . . 36 2.1.4 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1.5 Formal path to the low-cut filter . . . . . . . . . . . . . . . . . . . . 40 2.1.6 The plane-wave destructor . . . . . . . . . . . . . . . . . . . . . . . . 40 2.2 MULTIVARIATE LEAST SQUARES . . . . . . . . . . . . . . . . . . . . . 45 2.2.1 Inside an abstract vector . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.2 Normal equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.3 Differentiation by a complex vector . . . . . . . . . . . . . . . . . . . 49 2.2.4 From the frequency domain to the time domain . . . . . . . . . . . . 49 2.3 KRYLOV SUBSPACE ITERATIVE METHODS . . . . . . . . . . . . . . . 51 2.3.1 Sign convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.3.2 Method of random directions and steepest descent . . . . . . . . . . 52 2.3.3 The meaning of the gradient . . . . . . . . . . . . . . . . . . . . . . 53 2.3.4 Null space and iterative methods . . . . . . . . . . . . . . . . . . . . 54 2.3.5 Why steepest descent is so slow . . . . . . . . . . . . . . . . . . . . . 55 2.3.6 Conjugate direction . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.3.7 Routine for one step of conjugate-direction descent . . . . . . . . . . 57 2.3.8 A basic solver program . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.3.9 The modeling success and the solver success . . . . . . . . . . . . . . 60 2.3.10 Measuring success . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.3.11 Roundoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.3.12 Why Fortran 90 is much better than Fortran 77 . . . . . . . . . . . . 62 2.3.13 Test case: solving some simultaneous equations . . . . . . . . . . . . 62 2.4 INVERSE NMO STACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.5 FLATTENING 3-D SEISMIC DATA . . . . . . . . . . . . . . . . . . . . . . 65 2.5.1 Gulf of Mexico Salt Piercement Example (Jesse Lomask) . . . . . . 67
CONTENTS 2.6 VESUVIUS PHASE UNWRAPPING . . . . . . . . . . . . . . . . . . . . . 69 2.6.1 Estimating the inverse gradient . . . . . . . . . . . . . . . . . . . . . 71 2.6.2 Digression: curl grad as a measure of bad data . . . . . . . . . . . . 73 2.6.3 Discontinuity in the solution . . . . . . . . . . . . . . . . . . . . . . 74 2.6.4 Analytical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2.7 THE WORLD OF CONJUGATE GRADIENTS . . . . . . . . . . . . . . . 76 2.7.1 Physical nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 2.7.2 Statistical nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2.7.3 Coding nonlinear fitting problems . . . . . . . . . . . . . . . . . . . 77 2.7.4 Standard methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2.7.5 Understanding CG magic and advanced methods . . . . . . . . . . . 79 2.8 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3 Empty bins and inverse interpolation 85 3.1 MISSING DATA IN ONE DIMENSION . . . . . . . . . . . . . . . . . . . . 86 3.1.1 Missing-data program . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.2 WELLS NOT MATCHING THE SEISMIC MAP . . . . . . . . . . . . . . . 94 3.3 SEARCHING THE SEA OF GALILEE . . . . . . . . . . . . . . . . . . . . 99 3.4 INVERSE LINEAR INTERPOLATION . . . . . . . . . . . . . . . . . . . . 101 3.4.1 Abandoned theory for matching wells and seismograms . . . . . . . 105 3.5 PREJUDICE, BULLHEADEDNESS, AND CROSS VALIDATION . . . . . 106 4 The helical coordinate 109 4.1 FILTERING ON A HELIX . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.1.1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}