02_01 - e t 2 + 0.20 e t 1 + t 2 + 0.25 e t 1 + 2 t 2 +...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
STAT 410 Examples for 02/01/2008 Spring 2008 Moment-generating function M X Y ( t 1 , t 2 ) = E ( e t 1 X + t 2 Y ) , if it exists for | t 1 | < h 1 , | t 2 | < h 2 . M X Y ( t 1 , 0 ) = M X ( t 1 ), M X Y ( 0, t 2 ) = M Y ( t 2 ). Example 1 : Consider the following joint probability distribution p ( x , y ) of two random variables X and Y: x \ y 0 1 2 1 0.15 0.15 0 2 0.15 0.35 0.20 Find the moment-generating function M X Y ( t 1 , t 2 ). M ( t 1 , t 2 ) = 0.15 e t 1 + 0.15 e 2 t 1 + 0.15 e t 1 + t 2 + 0.35 e 2 t 1 + t 2 + 0.20 e 2 t 1 + 2 t 2 . Example 2 : Consider two random variables X and Y with the moment-generating function M ( t 1 , t 2 ) = 0.10 e 2 t 1 + 0.15
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: e t 2 + 0.20 e t 1 + t 2 + 0.25 e t 1 + 2 t 2 + 0.30 e 2 t 1 + 2 t 2 . Find the joint probability density function p ( x , y ). x \ y 0 1 2 0 0 0.15 0 1 0 0.20 0.25 2 0.10 0 0.30 Example 3 : Let the joint probability density function for ( X , Y ) be ( ) &amp; + = otherwise 1 , 1 , 1 24 , y x y x y x y x f Find the moment-generating function M ( t 1 , t 2 ). M ( t 1 , t 2 ) = -+ 1 1 24 2 1 dx dy y x e x y t x t =...
View Full Document

Page1 / 2

02_01 - e t 2 + 0.20 e t 1 + t 2 + 0.25 e t 1 + 2 t 2 +...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online