nagle_differential_equations_ISM_Part37

nagle_differential_equations_ISM_Part37 - Chapter 4 2 4 1 2...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chapter 4 2 4 1 2 3 y = 3 2 e- 3 t- 9 2 e- t +3 Figure 4–I : The solution curve in Problem 8. 176 CHAPTER 5: Introduction to Systems and Phase Plane Analysis EXERCISES 5.2: Elimination Method for Systems with Constant Coefficients 2. x = 3 2 c 1 e 2 t- c 2 e- 3 t ; y = c 1 e 2 t + c 2 e- 3 t 4. x =- 1 2 c 1 e 3 t + 1 2 c 2 e- t ; y = c 1 e 3 t + c 2 e- t 6. x = c 1 + c 2 2 e t cos 2 t + c 2- c 1 2 e t sin 2 t + 7 10 cos t- 1 10 sin t ; y = c 1 e t cos 2 t + c 2 e t sin 2 t + 11 10 cos t + 7 10 sin t 8. x =- 5 c 1 4 e 11 t- 4 11 t- 26 121 ; y = c 1 e 11 t + 1 11 t + 45 121 10. x = c 1 cos t + c 2 sin t ; y = c 2- 3 c 1 2 cos t- c 1 + 3 c 2 2 sin t + 1 2 e t- 1 2 e- t 12. u = c 1 e 2 t + c 2 e- 2 t + 1; v =- 2 c 1 e 2 t + 2 c 2 e- 2 t + 2 t + c 3 14. x =- c 1 sin t + c 2 cos t + 2 t- 1; y = c 1 cos t + c 2 sin t + t 2- 2 16. x = c 1 e t + c 2 e- 2 t + 2 9 e 4 t ; y =- 2 c 1 e t- 1 2 c 2 e- 2 t + c 3- 1 36 e 4 t 177 Chapter 5 18. x ( t ) =- t 2- 4 t- 3 + c 3 + c 4 e t- c 1 te t- 1 2 c 2...
View Full Document

This note was uploaded on 02/12/2011 for the course MA 221 taught by Professor Mazmani during the Spring '08 term at Stevens.

Page1 / 5

nagle_differential_equations_ISM_Part37 - Chapter 4 2 4 1 2...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online