GetTRDoc

GetTRDoc - NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited RADAR POLARIMETRY by Yong, Siow Yin December 2004 Thesis Advisor: Brett Borden Second Reader: Donald Walters
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
THIS PAGE INTENTIONALLY LEFT BLANK
Background image of page 2
i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE December 2004 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE : Radar Polarimetry 6. AUTHOR(S) Yong Siow Yin 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/A 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. 12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Radar polarimetry is a recent development seeing active research only in the last few decades. The phenomenon that optimal (maximal power) reflected fields exist in both the co-polarized and cross polarized channels of the receiving radar antenna was first introduced by Kennaugh and Huynen. Current research efforts focus on target scattering matrices and relating them to physical attributes of the target. This thesis provides a comprehensive survey of the polarimetry theories that have been put forth by various researchers to characterize, manipulate and optimize target radar returns via polarization states. One such theory is the Target Decomposition (TD) theorem that seeks to decompose the target returns into individual scattering mechanisms. The topic of optimization of polarization states of the incident field for maximizing power return is also examined. Two models are implemented in Matlab to verify and demonstrate these polarimetry theories. The first model uses TD theorems to simulate foliage clutter and study its effect on the polarization of the incident electric field. A (simulated) static dihedral target is introduced and its effect on wave polarization is also simulated. The second model studies optimization of polarization states. Both models are able to produce the expected results for known canonical targets.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 89

GetTRDoc - NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online