{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

File0047

# File0047 - Section 3.6 Implicit Differentiation...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Section 3.6 Implicit Differentiation 46_x:,/5_\ﬂ:>3—f=%(5_\/t)’1/2(_%r1/2)=——m;y(tv1)—\ﬂ=>y+(t—1)‘% —%t‘”2 12y1 _ d _23Z.’Y_ 1—2y 1, 9X_ . ﬁ:1—2Y\/ 4‘__\/V51‘ 3 (t 1)%1 =7 3’ => m— (1~1) —W’thusdx”€€= T W 1% 4\/1S \/1 2(1—2M1 5- _ 173/? t;t=4.>x_ [_ﬁ-t_4 y(3)2 ﬂ=2 1—22) 4 if therefore, % — L—(jjg— 2 74 t=4 47. x+2x3/2212+t 2 d—X+3x1/2d—’[‘22t+1:>(l+3x1/2)0d—x=21+12> %= l—i‘ﬁﬂw (n+1 1+2: y24 git/1+1 1+y- ,2)_(t+1)1/2+2\/_+2t(2y‘1 ’29,!) T %1\/t+1+7L+2\/37+(7‘-y%1) :0 , . d _ 2v d _ (WLlﬁH—Zx/(i)_ -y\/'- 4N!“ ﬂ \$( t ' 1 ' ()7) 3% 271+] 2\/y if (m+71§)_2\/—(t+1)+2t;71+1’ 2! Ge‘m/H—l 9x _ dy/dt _— zV/ﬂii lHZt 111 1 dx _ dx/dt _ 21+] I+3x112 thus 3:0 :> x+2xm=o :> x(1+2x1/2):0 2 X20;t20 24\/324(4)3Zo+. " 4(0+ l)+2(0)\/0+1 ‘V 2 yx/0+1+2(0)\/§24 2> y :4; therefore gfipo 2 - _ d___x dx ~ dx, # ggul—xcost. 48. xs1nt+2x-t => d1 smt+xcost+2 212(smt+2)d[—1 xcost > at“ Sim” , tsint—2t2y => sint+tcost—2= did;thus%2%;t27r => xsin7r+2x=7r sin1+2 E. El 7 sin7r+7rcos7r—2 A —477—8 _ _ 2x22,theref0redx‘[=w— 1777mm — 2+” —— 4 sin7r+2 qu-Fy 49. x2 + ny — 3y2 2 0 2 2x + ny’ + 2y — 6yy’ 2 0 2> y’(2x — 6y): —2x — 2y 2> y’: 2> the slope of the 21 2> the equation of the normal line at (1, 1)1s y — 1 2 —1(x —- 1) (1.1) 2> y 2 —x + 2. To find where the normal line intersects the curve we substitute into its equation: x2+2x(2—x)——3(2—x)220 2> x2+4x—2x2—3(4—4x+x2) 20 2> —4x2+16x-— 1220 2> x2 — 4x + 3 2 0 => (x — 3)(x - 1) O > x 3 andy x + 2 — 1. Therefore, the normal to the curve at (17 1) intersects the curve at the point (3, 71). Note that it also intersects the curve at (1, 1). tangent line In 2 y’|(1 1) 2 ﬂ 50. xy+2x—y20 2 x3 —§—+y+2 1:0 => 33V;2%;theslopeoftheline2x+y=015—2. lnordertobe parallel, the normal linesd must also have slope of —2. Since a normal is perpendicular to a tangent, the slope of the tangent is % Therefore, ¥:—: 2 % 2 2y + 4 2 1 — x 2 x 2 -3 — 2y. Substituting in the original equation, y(—3—2y)+2(—3—2y)~y20 2> y2+4y+320 2 y2—3ory2—1.Ify2—3,thenX23and y+32—2(x—3) => y2—2x+3. Ify2—1,thenx:—1andy+12—2(x+1) 2 y2—2x—3. 51. y2 2 x 2 §§ 2 217 . Ifa normal is drawn from (a,0) to (x1,y1) on the curve its slope satisfies XELTJ 2 —2y1 > y1 2y1(x1 a) or a 2 x1 1 %' Since x1 2 0 on the curve, we must have that a 2 % . By symmetry, the two points on the parabola are (m. ﬂ?) and (x1, — (/71) . For the normal to be perpendicular, xl—a 11— x1 2 )2—12> W212 x12 (a~x1)2 2>x12(x1+%—x1)2> xlziandylz :t%. Therefore, (27 :1: 5) anda: %. 143 ...
View Full Document

{[ snackBarMessage ]}