File0056

# File0056 - 156 Chapter 3 Differentiation 41 y:xsin‘1x...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 156 Chapter 3 Differentiation 41. y:xsin‘1x+ l—X22xsin‘1x+(l—x2)l/2 _'—l x x __-— —sm X+m—m—Sln :> 3—: : sin'1x+x (7—11“) + G) (1 — x2)_1/2(—2x) 42. y : ln(x2 +4) — xtan‘1(§) => % = x2214 —-tan‘1(§)— x [—g] 2 172:4 —tan‘1(§)— ﬂixx ) = — tan"1 ( Mix 43. The angle a is the large angle between the wall and the right end of the blackboard minus the small angle between the left end of the blackboard and the wall => a = cot‘1 (Ix—5) — cot‘1 G) . N 44. 65° + (90° — B) + (900 — a) 2 180° 2? oz = 65° — ﬂ = 65° — tan‘1 ( 1) z 65° — 22.78° z 4222" “\$1 45. Take each square as a unit square. From the diagram we have the following: the smallest angle a has a tangent of 1 => (1 = tan’1 1; the middle angle 6 has a tangent of 2 :> 6 2 tan‘1 2; and the largest angle 7 has a tangent of3 :> 'y = tan‘1 3. The sum of these three angles is 77 :> a + 6 + 'y = 71 => tan’11+tan‘12 + tan‘1 3 = 7r. 46. (a) From the symmetry of the diagram, we see that 7r — sec‘1 x is the vertical distance from the graph of l y : sec‘l x to the line y = 7r and this distance is the same as the height of y : sec‘ x above the x-axis at 1x = sec—1(-—x). 1x, where —1 g x 31: cos“1(— :> sec"1 (—x) 2 7r — sec‘1 x —x; i.e., 7r — sec” 1 (b) cos’1(—x) : 7r — cos‘ x) = 7r — cos’1 (i). where x 2 lorx S —l 47. Ifx =1:sin“(l)+ cos—1(1) = g + 0 : Ifx = 0: sin—1(0) + cos’1(0) : O + g = Ifx = —l:sin‘1(—1)+cos‘l(——1) = —§ +7r = g. The identity sin'1(x) + cos—1(x) = g has been established for x in (0, 1) , by Figure 1.6.7. So now ifx is in (~1, 0), note that —x is in (0, l), and we have that sin—1(x) + cos—1(x) : —sin“ (—x) + cos—1(x) since sin‘1 is odd 2 —sin‘1(—-x) + 7r — cos‘1 (—x) by Eq. 3, Section 1.6 = —(sin’1(—x)+ cos‘l(-x)) + 7r 2 _% + 7r NI: Nl=l ’ll' 2 This establishes the identity for all x in [—1, l]. 1 48. x:>tana:xandtanﬁ=%=>§=a+ﬂ=tam x+tan’1%. 49. (a) Deﬁned; there is an angle whose tangent is 2. (b) Not defined; there is no angle whose cosine is 2. 1 50. (a) Not deﬁned; there is no angle whose cosecant is 5. (b) Defined; there is an angle whose cosecant is 2. ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern