MAT 581 HW 1

# MAT 581 HW 1 - disp(sprintf%2.0f .0f%8.0f .0f...

This preview shows pages 1–2. Sign up to view the full content.

% P 1.4.8 MaxVal=2^5-1; disp(sprintf('THe nearest floating point number to 64 with 5-bit mantisa is .11111*2^5 or %d', MaxVal)) % P 1.4.4 t = 24; MaxInt = 2^t - 1; n = 0; nfact = 1; s = MaxInt-1; disp(' n n! x n!/x MaxInt-(n!/x)') disp('------------------------------------------------------------------') while(s>=0) n = n+1; nfact = nfact*n; % Computing x = largest power of 2 that divides n!. TwoPower = 1; while floor((nfact/TwoPower))*TwoPower == nfact TwoPower = 2*TwoPower; end x = TwoPower/2; % n! is exactly representable if n!/x <= MaxInt s = MaxInt-(nfact/x);

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: disp(sprintf('%2.0f %15.0f %8.0f %15.0f %15.0f',n,nfact,x,nfact/x,s)) end disp(' ') disp(sprintf('The largest n so n! is exactly representable is n = %1d.',n-1)) % P 1.4.3 x = linspace(0,2*pi); sum = zeros(1,length(x)); z = input('Please Enter number of terms:') %creating a vector of length of x of 0s; for i = 1:length(sum) %initialize first loop for n = 1:z term = (((-1)^(n-1))*x(i)^(2*(n-1)+1))/factorial(2*(n-1)+1); sum(i) = sum(i)+term; end end plot (x, sum, '-', x, sin (x), '--')...
View Full Document

## This document was uploaded on 02/18/2011.

### Page1 / 2

MAT 581 HW 1 - disp(sprintf%2.0f .0f%8.0f .0f...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online