This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: MATH 23001 TEST #1 NAME: KE Y Sept 25, 2007
Time: 50 min d
[4] 1. Find the distance from (1, 4, 2) to each of the following: [4] [4] G)
e: 1) (a) the xz—plane 0L: LH = "i’ (b) the y—axis 0L : J¥L4%" = \lc—ilurqy = J 5" 2. The curve y : «sz + 2 in the xyplane is revolved about the x—axis. Find an equation in
entify its center/vertex and simplified form for the resulting surface. Name this Surface and id
axis of symmetry. >Ll.t»'~1’~+—tL = 2. '
m S‘ueruuz, ft '0. k‘a/pubolot'oi, d? :L SLv—Jé Mﬁmé“ at Coimo) out mm cor QWMvM to Lands.
7 qlx2+4y2—9
x _ H I 3. Using proper set notation algebraically describe the domain of f(x, y) 2
Carefully sketch this domain and identify ail the relevant information on your graph. ' ‘4
@mibg , ' Liz/ XLJV‘f‘ilvﬁ 10 . WOW
“ﬁtter 2 .‘i <— Mtvws/“ini ﬂ/ WW 0+ 6‘“ I»;  — — *1 2.
14:0 8 ‘ IL ‘ :'l (914.1).3 x
J . ,
OwnE Ljhaqus 31:11
I i
f{ (yam [XL—w 1.7.1 Mt x¢o _ ~
) ‘3, 3 N’TEL ‘fpdx‘u omrgeiL. 69—... ~ mi  do. my \ {mamas(123% ﬁrem Esteem \ ii“ '\ ‘5” YW‘GIKE we 7‘ ' {TVSEMRW mm Wﬂ‘i‘Fﬁ‘. ' Wkﬁfﬁx‘ww’h \ .Wn Wm M». mama we. as WW" Nathan» 3 'n. 2 [5] 4. Find an equation in spherical coordinates for the surface with equation x2 + y2 +22 2 42. ammmmmmwmw mmmsnmmmzmﬁ'mth‘vammI:‘ gas—H rm. am—mxmmmmmm (:i Name this surface and sketch its graph.
\fY‘: W L 1 L ‘
f’ fuse 71441th Ame—Hi: Cf 70.7": ”90402725 _ XLMHQb—RlL: Lp. ,0 .2: e008; “Tl:2 snort“; i"! a Sp’ﬂerre. WWWL
ﬁfE (0)011] Luff faM§ Q“ mmmmma N01533:, £270 1; m
cngc. (0,0,0) a—aL 619:5 “0 MM? "Whitman; araamwsmﬁi:mw:wawxmm as.
”w
‘W {ﬁﬁ‘ﬁmmmﬁﬁmmsﬁmmmwﬁvgﬁhw [4] 5. Draw a contour map of g : g(x, y) =_ 11106 9y), Showing level curves for functional values
equal to 2, 0, 1, 2. Write down an equation in simplified form for each level curve and clearly label the level curves on your graph.
(Al—$15) = 4% law) I 4: (amp V‘v'j c 5'“ ‘ WHQWW. "TL 2?"? .\ A" '9 r   .  . —~. 1
\ “31% RV: newMyqmeWmmumwmtmwi:imsxmwmwmﬁmammﬁx‘mm{maismEwa‘rmgm 3 WWW“ Laww: [8] 6. Put the equation of the quadric surface 43:2 + 9y2 — z2 + 36 = 0 into standard form and
carefully sketch its graph. Name the surface and give a detailed description of the trace wear . A ( curves parallel to the coordinate planes. identify all intercepts and axes of symmetry, if any. E
, . 1 g
LE’TJ—h ﬂt11+ftL=3Q "F+‘~U wves «w e. Mpg/W5 MW E
*ifma i ,LL I. owe (gigoloiaAaLWrcHL% t
3" ”3:.‘1 +3. t z dame/M .
_ i L i L 1,
q'l * Lira at t  1 " 2': ‘2 «Pg: :1.
. '51 9}, EL
W
_ “ma/w) From
‘ "THVSurgrau, ﬁg k'afﬁrlawq
3’ gL‘r‘L‘B WW 4% (mom) “a mﬁﬁiﬁrmammmﬁaﬁsﬁuﬂmmm mmat‘mm s\ mumsmfo .\\ a ﬂu»: .Xﬁﬁw 4:;El‘, j, Two [39th (Du9,5163 ’k>cgw2t¢.gi aha” mm at
(.010) 4"» #béjk49 ‘_ Na alvam WvLS a“. ﬁmﬁ&meW§Eﬁ§‘Z\§‘IKW \’ «1‘6 33mm ‘zthWKQCQéRWchWE mﬁﬁmmnmﬁﬁﬁﬁﬁmﬁsavﬁaﬁmmas [2] 7. A can of soup is 23 cm long, with inside radius of 5 cm and outer radius of 5.05 cm. Describe the solid region representing the metal in the can using cylindrical coordinates.
W G— G:i(l',6‘.1‘:)\5.£ r5595, 05.95111", 05%523} ...
View
Full Document
 Fall '07
 ChrisMorgan
 Calculus

Click to edit the document details