{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

ch1 dof - ifs—1 x1 1:1 4 j EfiZ-J-x 4 i=1 j M X —j—1...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ifs—1 x1: 1:1 4 j EfiZ-J-x]: 4 i=1 j M: X]: —j—1)+‘2fi = 3(4_4_1)+i=_3+4=1 Mobih'ryzl M= 3(n—j—1) + fi 1: = 3(7—8—1)+3=—6+8= 2 Mobility22 11=8 j=10 j £51031: 10 i=1 1- M =3(n—j—1)+ fi 1: =3(8—10—1)+10=—9+10=1 Mobilityzl szn _J‘ —1)+§'1f1 =3(474,1)+4;3+4=1 Mobility: 1 M =3(n*j71)+ fi =x7_9_1)+9l:_9+9=0 Mobility = o n=9 I a n=10 1:1' j 1:14 M =3(n—j—l)+ f1 .1 1: Efi=14x|=ll =3(9_12_1)+11 =_12+12=0 m j Mobjjjryzo M=3tn—{—1)+2fi IdleDOF: 0 m. =3(10—14—1)+14=-15+14=-1 n =7 Mohility:-l J=9 J- M=3(n—j—1)+ £1 1: n:6 =3(7_9_1)+9=_9+9=0 H Mobflityzfl 5 l_ IdleDOF: 0 21H” “9 I" J n =10 Mfln—J—Méh j =12 J. 1 :3(6—8—1)+9=—9—9=0 M = 3(n—j—1)+Zfi (b) Mobility-0 1: =3(10_12 _1)+12= _9+12=3 Mobflityz3 IdleDOF: 0 11 =11 j =14 J M=3(11—j—1)+ fi 11:9 j=11 J Efi=11x1211 _ _ 1:1 =3(11—14—l)+13=—12+13=3 ‘ j Mobfljryzfi MJH'J'MZE 1¢11¢D01== 0 =3(9—11—1)+11=—9+11=2 N 7 Mobility23 I =' J =9 j n =11 M =3(n—j —1)+ f1 1:14 =3(7_9_1)+9=_9+9=0 J Mobfljry=0 Efi=l4x1=l4 WEDGE: 0 i=1 . J M=3(n—j—l)+2fi 11 =8 1: j=10 =3(ll—l4—1)+14=—12+14=2 j Mobiljn'22 M =3(11— j_1)+ fi 1: =3{871071)+]0=79+10=1 Mobfljryzl IdleDOF: 0 11:: n =13 J=6 . I _ J J=13 M=3(n—j —1)+§1f1 J M=3(n—j—l)+2fi =3(5—6—1)+7=—6+T=1 i=1 Mobfliryzl =3(12—15—1)+15=—12+15=3 Idle DOF: 0 Mobility: 5 1 (a) IdleDOF=O n=, i=9 J- n =10 Mam—Japan j=ll j =x7—9—1)+9=—9+9=0 M=3(n—j—1)+Efi Mobfliryzt) i=1 IclleDOF: 0 =3{10—11—1)+11=45+11=5 Mobflity'25 1 n =1- IdleDOF: 0 J=l§ j M=3(n—J—1)+ f1 n=10 1: . =5(13_15_1)+15=_12+15=5 1:15 j Mobfliry=3 M =3(n—j—l)+2fl IderOF: 0 i=1 = 3(10—13—1)+13=—12+13=1 Mobilityzl IdleDOF20 j=15 J M=3(11—j—1)+2fi F1 13:8 1- Cam =5(l3-15—l)+17=-12+17=5 M =‘(n _-_1)+ fi Contact MObfliT},:5 1: IdLeDOle =3(l'8'll+8='6+8=2 Mobilityzz n =1: j=16 J M=3(n—j—1)+Efi kl = 3(12—16—l)+17’=—15+1?=2 llterefone, the answer to the problem is no. The mechanism has two degrees of freedom! and two Mobility : 2 independent input vaiinbles must be specified before all of the velocities must be detenniued. Idle D01: 2 0 n =9 j =1: 1 M=3(n—j—1)+2f1 id =3(9—12—1)+13=—13+13=1 Mobilityzl Idle DOF: 0 n=11 j= 15 j M =3(n—j—1)+Dfi 11:13 i=1 = 3(11—15—1)+1?=—15+17= 2 PM K Mobility = 2 , Idle DOF = 1 M=lfl'l'1)+2fi i=1 =ttts-24-1)+n=-21+24=t n=12 H j= 16 3‘ Mobilityzl M = — '—1 - 3‘“ J “ LEE [(11:00]:th = 3(1}15—1)+ 14(1)+2(2) =—15+18= 3 (b) Mobility = 3 Idle DOF = O n=11 j=14 i M = 3m—3—1)+|:| fl = 3(11— 14— 1) + 16= —12+16= 4 Mobility = 4 Idle DOF = 1 Camjoints 1101311111 = 2 11111: DOF = 1 11:7 i=9 J. M =3{n—j—1)+§1fi 1= =3(T—9—1)+10=—9+10= 1 M01111; = 1 1d]: DOF : 0 _5__1l—_l— —— 76““ _ ///////‘/ 7/4 '1 11 1' =11 =14 . J M =3in—j—1)+ £1 1: = 3(11—14—1)+14=—12+14=2 MO1111in = 2 Idle DOF = o n =3 j =10 J M =3(n—j—l)+§ifi 1: =3(8—10—1)+10=—9+10=1 Mobility: 1 Idle DOF = 0 =3(?_3_1)+9 =—6+9 =3 MO1111in = 3 1111s DOF = 0 ...
View Full Document

{[ snackBarMessage ]}