quiz1-2007-solution

# quiz1-2007-solution - ⎝ ⎛ = dx dy dx y d Ordinary 2 x y...

This preview shows page 1. Sign up to view the full content.

Faculty of Engineering and Technology Chemical Engineering Department 0905231 Mathematical Methods for Chemical Engineering Name: Q1) Complete the following table: Equation Ordinary or Partial Order Independent variables Dependent variables Linear or non-linear Degree y x dx dy 5 2 + = Ordinary 1 x y Linear 1 x e x y x dx y d . . 2 3 3 = + Ordinary 3 x y Linear 1 φ φ . r d dr = Ordinary 1 φ r Non 2 3 2 2 y V x V = Partial 2 x,y V Non 3 t S dt S d dt S d . 3 3 2 2 3 3 = + Ordinary 3 t S Non 1 y U x U t U + = 2 2 4 Partial 2 t, x, y U Linear 1 2 3 2 2 2 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ⎝ ⎛ + = dx dy dx y d Ordinary 2 x y Non 2 Q2) For the following differential equation x dx dy y = . , which one of the given functions is a solution to it? x y x y x y = + = = 2 2 2 2 ) 3 1 ) 2 ) 1 Number 2 is a solution for the differential equation. Q3) Which of these functions is an explicit function and which is an implicit function? Function Explicit Implicit y e V x 2 sin 3 = explicit 5 3 3 2 = + − y x y implicit 2 9 x y − = explicit...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern