{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# REVIEW 2 - Review Quiz#2(20 points Math 200 Name Key Group...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Review Quiz #2 (20 points) Math 200 Name: Key 04/07/10 Group: 1. (a) Find the gradient of f (x, y)=5xy2—4x3y at the point P(l,2). VH’W) : <¥X)¥?> 2 <\$yknllxayj lOXy ~Lf33> W012) = (20—20, 20.») : <4, 16> (b) Find the directional derivative of f at P(1,2) in the direction of v =(—1,3) and explain its meaning. ——I "' - "‘ A -' : {£114.33 0“ W’97) “ View] , u. “L 7%? m —-. __ _ _ g _: 52 ““013 ~ V¥(I,2)-<de-g)ﬁo> —(—Lr,:e>-<-,%ro)g%5> - ﬁt‘ﬁfa i=5, UTE 15 1406 rcd-e oi: aka-n39 ai- -F {in like du‘rec‘ix‘an. d'F 7 '5 (*1; 33 at (3036* [30,1]. (c) Find the maximum rate of change of f at P(l,2) and give the direction in which it occurs. maximum. wad-e of change : u VFW-1)“ '1 H (“HEW = m WEI-“w? d‘ﬁcﬁé" oi- maxing“ mi'e a“? change e-P -F at {30,23 is Vitus) = ~43 +153 m «3 +43 2. Suppose 2: f (x, y),where x=g(s,t), y=h(s,t), g(1,2)=3, gS(l,2)=—l, g,(l,2)=4, h(1,2)=6, hs(1,2)=—5, h,(1,2)=10, fx(3,6)=7, fy(3,6)=8. Find%whens=landt=2. ”Lemon mi i=2, x=g(1,2)=3 owe! y=l~(l,2):é a- 3e 31 91 3 — a?" "a; 3t + 3) Sit ‘ +"("I’)3t("Jt) MC?("I7“‘t(‘Jt) )3; 9t 3:; = ix (3/6)gt(l,2)+¥,(3,6)Lt(112) : 7(+)+8(I0)=103 3. Find the critical points of f (x, y) = 4+x3 + y3 ~—3xy and classify them as local maximums, minimums, or saddle points. "c” 2 3X13; = O =>7=Xi can“ pm 1 'P)’ 3 37"“ 3x —'-'- 0 30(1) -3): =0 :1) Xz—x:° :) ”(xiii-to are {(6,5)} - . x=o orx=l QM ’1‘ ivy—6""? £7726‘11;Xy =53 7 7:0 m-yzi DOW) 7- “i 1 . 0(00) - m” {m ”MM-H)“ "35x74 I 6‘9 <0 . 719QO J (0101;; a Saddle fond" DIM): '36-“: >0 Qnd ﬁxﬂilidé >0 .Timcm) item 1'; q local minimum at J (‘1‘ . 4. Use Lagrange multipliers to ﬁnd the right circular cylinder of smallest surface area that has a volume of it; include the top and the bottom circles. L Q t '5 represent Sacriﬁce. a. pea) r rﬁdl‘UJ) (a) Give the function to be minimized. in M65“ and U Uolu e M . 3(7)“ : Qﬁ‘r‘k r- .3an (b) Give the constraint. U (wk) = THEL : 17' (c) Give the system of three equations and three unknowns that needs to be solved. Us=avv < IrrL +44.er l‘ﬂ‘r ) ‘-'- 2(21rr4c) Wrz> 2111'\‘f"-!-1I‘vr‘: A'l’n'rk h+1ralrln lTrr I Aan r; 2 -'-’ AY‘ Wr‘ln : Tr r‘k = l (d) Solve the system of equations to ﬁnd the correct dimensions of the cylinder. h+2f 3 Ark , I" 3 Z 2 3 2;” => +1r 1k 3 t, 3‘, \$Ub\$+\'+0+|.n} 11 2 3y- {n+0 —H\e Conj‘l-ra'm‘l- gird-fer». r115 :1 ~ 3 3 _ yield; )1» =1 => r '"i 3 ‘3 item) “if; M 11:20? 5. Calculate the value of the multiple integral ”x32 dA , where D = {(x, y) | 0 S y S 1, y2 S x S 2y} . D l I 6. Reverse the order of integration for Jo I 2 ysin(x2) dx dy. Do not evaluate. y 7 x371 ‘ ’ . "r; 0" Elwlrlfxf’, 057“} 54’“ ‘I‘SMx‘dey 3 7. Use polar coordinates to evaluate I: I0 (1322 + x3) dy dx. J5?" 9 Ens-m - w 5720, on“? 13096)] @5913m05r53g 3 211' 5 ’5 s -5 COS 9A9 rﬁdr 1‘. Sine/3 ' é‘r o 3 (Oaf-LI).§L3 o y?- _ 13:3 "- 5 8. Evaluate ”L 22 d V , where Wis bounded by the planes y = O, z = 0, and x+ y =1 and the cylinder y2 + 22 =1 in the ﬁrst octant. ”fhdu‘jfli 2,9921” =CIDIU— ﬂow» =f£y 371;” b ‘ x a 042._ W : {[(1‘*l‘é(\v)]dx: [1(l-X)LIJ§+ (1-29:10 m gn-S‘l' Odors-T11" : 0 —-I:_J~2 +11: :- 3]: “TL: 2 '52 9 Rewrite the lutegral Il I12 ID “V f(x y,z) dz dydx as aniterated integral in the orderdxdy dz. 7:)‘1- Lu: ?(X,y/2)l-fo5l)xt_{),f.fl 65351-7} I 7 ‘ {7 H0“?- 4} AJ Qmﬂﬂédydx - ojf 16g>\$géjdxdyda J1? IJl—xZ—wz 6 k (x2 + y2 + z2 )2 dz dy dx to spherical coordinates. Do not evaluate. Lu 1: part of Spkere U '5 gﬂgytajloéxﬁljofyiUl-x‘Jdi‘35m} [NHL C03,.) 0) and. Pi] _ ‘ _ rn 4cm Lam: ' EOACPJIOEJ’EB “595 V5 05 “P ‘ Vt} 7- J SW m 1. I j (x+y +ildad,dx - ﬁjjff sf=n¢00lquﬂae jfj/j’SWPde-WG 10. Convert the integral I; I01 2 11. Find the volume of the solid bounded by the cylinder x2 + y2 = 4 and the planes 2 = 0 and y + z = 3. BTW 911‘ 1 3 Psi-n6 2:3“; x+7 0+ 6 M] fJfra'zarae" O O D Q'ﬁ'fl r‘(’3-rsia6)dr—de : jm 3— 1L '3 - e as o [1?" 3r5m1r 2 =5w(é~§sine)ae e“ [69+3cos9] 12. Find the mass of the lamina that occupies the region D bounded by the parabola x =1— y2 and the coordinate axes in the ﬁrst quadrant with density function p(x, y)— - y. xzt-jt ma” m ‘gfb‘ljjdnn — Iii!) )dXd-‘f I l p # 13. Set the up following; do not evaluate. (a) A double integral that gives the volume of the tetrahedron bounded by the plane 2x+ y + z = 2 and the three coordinate planes. 13): V: g5( H11X7dydx (b) A triple integral in cylindrical co-ordinates that gives the volume above the paraboloid z = x2 + y2 2 and below the half-cone z = ‘fo +y2 . ‘2 : X2171 .. W 1.. a? | r r =r .. ‘L V‘J Jf rdaarae r "“3 O 0 rz' \‘(t‘~ll=o 7 r: 6 "rt-l 7i and below the plane 2 = 2. . airy/Lt lSkCP ftoSQ=l " 95 if Mame faiwma ...
View Full Document

{[ snackBarMessage ]}