{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

S 16-3 - Math 200 Spring 2010 Worksheet#25 Section 16-3...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 200, Spring 2010 Worksheet #25 Section 16-3 Conservative Vector Fields 1. Let F be the gradient of ¢(x,y,z) = xy + 22 . Compute the line integral of F along: (a) The line segment from (1,1,1) to (1,2,2). git-.111 = W111) —cp(I, ,1) = (I-arzzw (I-IH‘) = '+ (a) A circle in the xz-plane. 5mg eve-vi gradient vee‘l'm- field is ConSeruwl-[ue (5,1: d4 15 indefpndmro-fM) ’er [me in 4’3th over q closed curve 1‘ O (c) The upper half of a circle of rad1us4 with its center (0,1,1) in the yz—plane, oriented clockwise. Ir Thl‘ts‘ml Pbl'rd' n = (0,4,1) ) +11»...th {Jaini- 3 -‘ (0151‘) 11:10,») on B=(o,‘s,1) 5M: = (W031)- <P(0,—s,|) = 1" 2 r C 1 1s . 2. Compute the work done against the inverse-square vector field F(x, y, z) = - ( 2 2 2 )312 (x, y, z) in mov1ng x + y + z aparticle fi'om the point (1,0,0) to thepoint (3,0, 2) along the curve c(t)=(2+t,Jl—I:,t+1),—ISt51. _ 1 ‘L ‘—" A Letr~0x+y+21kflnen F()§,Ig):~"§<xm%): “L g>zfl§£ . Fa. Smne vet): '~ Jr: Y' ) 1P0+edlci £vnc~l~fm ¢ ._—_ , H1, Tim Work elem. against F 2;? 1‘4 fiche-1ft? (32“) 500 410)]: “[62545] : Mil—L? 10 I 3. Determine whether or not the vector field F( x ,)y )(= (x— y) )i+( (—x 2)j F “((31%) is 0» BMJxen'l' vec+ov {talc}? UJI'H\ i : \r' is conservative. If so, find its potential function. F1: (X-V) ) F, :(x—g) 3E -.. afi— : ‘D—y“ ‘ 7,1 3X l ‘ ‘d s D fiQr-ewcwe ) vec’i‘or £EEII'J- F 15 not— Cen§ervost1ue “019. 'H\°:t g}. 'dA > D :3) F15 no‘i’ CODSPI'U'Ov‘l‘U-Ffl- ...... h 4. Determine whether or not the vector field F(x, y) = (3 + 2xy)i+(xz'— 3 y?) j is conservative. If so, find its potential function LE F =F) V‘- -! . : :2), is. so F 15 1 3x ) canhmhbcE, 9? 2 Usfifl; Fl- “1‘13 '3‘» 3):)(3+287)ckx1 “32-11-317 +20) . ’ ' 3‘; :iy(3><+>‘7+3(11)= X+a(VI->3(11—3, (t5. _ 3 * C H—Q'fl-Cej 7):}? 7)] I 7x“) 73* WXJ‘J‘BX’rxy-ys-PC» 5. Determine whether or not the vector field F(x, y, z) = (2392 — z, x2 + 2 y,1 — x) is conservative. If so, find its potential function. Ft F; F: g; (x1417) :ZbF 3E7 lbw-‘55) g - . 31‘! ()~V-) : o —' 3),“2 (X1+Qy) =7 F is conSfi'waJrée» 6‘“ CW’PMQI‘ MW) :33. (Ht) = -| ~‘- ??(lxr 2) I. U39. agiifi: 3X) *2- '. (W473) ‘jfl’xy— %)dx = pray—XE +3 (7,2) 1 2.05 : z: ‘ 3 "A" 1 e y F; X+J7. jg-ay(x27—x%+alz%)):x+%g =)%?:2/ H?) =51 M. = it»: c. Hence £96912)”; “*2 with L 6. Determine whether or not the vortex vector field F(x, y) =< —y , x > is conservative. 1. A ( L...) : {X1+2L)-X{2x) :- 22;" :3 ”*7" MW)“ H577" Cw” Pm'fid’ ' __ :_‘2_ “(>33- L) f a. " are e W»! ' -_-v 7 + ‘2 ) __ -X 37[ XL‘W‘I) ‘fi " 17—371 3 FIGURE 12 The vortex vector field. { X *7} U‘ +7) CM; F 6 not conserroltlte beamse é '{E-ol‘fi' .74 0 Note ~Hnat+ -Hte verify U665" Un‘oL circle. (13 aG)'-‘(Cose) Sn‘oG) 2'32}. field '3 not swirl “med-Ed Effie): <-Su§6, “59> 1’ _ 13, _ ztr 2” c HIE- F(g[9)).(_(o)ae :J (—stke, cose>-(-sttlo, Coso> J: ~69 = Qn’ 95 O O O O 7. Evaluate ICFtds,where F(x,y)=1:22i+2yarctanxj and C: x=t2,y=2t, 0951 3k ‘4 ‘ x ‘ . i 4:. _ 21... .. A 1, Mn fiat F l3 Con served-we . '37 ( ”12.) - H‘X)’ ‘ 3)! (lyarc'l'anx) - ‘ . 3.89- 1 . 2. 1' F‘M‘ P°"°“"'°~‘ ‘9- We >x ”It—L“ (PM) = Lieu = y‘m‘rw +30) ”5‘1 gtzlftrdanx ‘. (Say-Q = lyurc+anx+3yyl *7) 3‘C7)30 30) =I3lflol7 = C . 5° @9093) : fiat-Chm + C 3. EValvwl‘B “he {Miami ' lkt'h‘cq faker o‘f‘C??{o} 51010)) ‘l‘écmfmlroa'tn‘l‘I ”cs-(I) : (1'3) {Hafiz/[Octet's :CD(I,1)-Cp(o,o) = Hatch“ — o = H-‘l/o =2 T? 8. Evaluate [CF-ds,where F(x,y,z)=(2xz+y2)i+2xyj+(x2+322)k and C: x: t:y= -t+=lz 2t— 1, 0<t<1. F‘ F’- F3 I 5kowF \s conSQrUz'Iw-e‘ é; (2x7)=—1),: 37(17‘2'1'71) - A 2 F'Gsol “Obtefifl d)‘ .A( :(Xli 3,2 J: o , ”a (y,2)= Sfigllfihx tkte) §%¢'X+L(:)= F =5L’:ta) “32,36 Heme ) (filmy—I = 9‘ 2 *‘X7 ”4-? I: C. I2J=I3ue =2 +(_ 3. Eumcere Hug we grew 1 mm Pamufcra‘to): (qt-1))firmlmifauir:2m.-(W) £96.43 :CIUCU-as‘: @(I13,l)"50I0/IJ—l) .: é‘("II : 7 9. Find the work done-by the force field F(x, y) = e'y i—xe‘y j in moving an object from P(0,1) to Q(2,0) . “-4 _ A- _ .. ._. —-._3 _ - F65”) : (8‘3"Xf‘f >- 5mm 3718?)" "€v=§(("Xe 6‘”) F D (onSPrvoi‘tue . ‘ _ «‘1 _. - ~ Fman. 3:316 1" :CpIYJ‘II: fLK:X€ 7+3“) £1. 37 "‘xe VHF M : wean-a I?) :93”) 5°) 5° 8/7):S<71{7I“7:C- I—Ifnc-e) (135W) :Xe 7+C 1.5 a {JOHA‘I-i‘a.‘ {UM‘g'L‘Oh- 'Qar ? TIM», mi— 3,9561? {was : 491.20% 9%,) = get: 0 2 2 10. Show that the line integral is independent of path and evaluate the integral. IC(1-ye‘x)dx+e‘xdy, C IS any path from (0,1) to (1, 2). "J -x -X__ 3 ( e”) F(X,7)=zl—ye )8 x.) 5mm? 37(1 ")9 x)-—“€ - 5X6 ) .H‘_ and ‘Iihus :‘I‘J Ime UTI‘Qal‘Bvl is Independmfo‘I fa FxQCp'. M‘le— .—7:"‘ 3L}(may!:-fl1-;e“")4x=u+;e"+3(,) 37:13 :6x - ”(H7613 (70:6 +9va =9 3(3)“) floaty) =6 That-afore 12(1)le” x+7eu 55+ (- I) mono-I-en‘l-rql ‘CUI‘L‘I'C‘MN . (I‘VE W)°I¥+f d7: EVE? do =£fifl.1) ”0(0) :([+29 I) I "i“ h.) F‘s CanseeUK‘J‘IUE’ It: a = .. a . F. F‘. fi‘ 3% :0 ConSQruwl-Nfl 11. So what do conservative vector fields look like? F(x, y) = (2x,2 y) Which of the following 7 vector fields are conservative? What is not happening in any of the conservative fields? What is going on in the nonconservative fields that is not present in the conservative fields? check crust Pea-HA; 3311:; and JAYF' ”tor Buck veclm- {hit can Sewe‘l'iu-e K\\\‘ ,x\\ \‘ '\\ \\* \\\xa:j//:,k\\ xnfg/jj,x\\\xh \\\\a,////,k\\ xa,(§//,kx\\a- .\\\\., ’1’ .x't x wax-t . ’, 4 . i.,’:1’3:_»9¥l|.,j11:,|l‘ll§, '1. ‘1} fp-“‘ \\.1ff1‘1' I“\T\“’/ fl,‘\\ \\,1//‘-’/ J‘\\\\Kl/ /,a‘ \ “flyiffz , \\\\ ;,,\\§\\,,;//, fr, \‘\"\' riff} *\\\\‘ff "tuv ‘\\\‘“ \xli’ll, "«;a«‘; 4 )1 f...- ," f! “‘l“‘. rr ”Suva?” ,“\\“,xx/ ‘\\\“,;// Conservation of Energy Let F be a conservative force field such as the gravitational force or electrostatic force; that is, we can write F = Vga. In physics, the potential energy (PE) of an object at location (x,y,z) is defined as P(x, y,z) = -go(x, y, z) , so that F = —VP. The work required to move an object from point A to point B along path C is equal to the change in potential energy: W 2 [CF ods = - I0 VP- ds = P(A) — P(B) . The name “conservative field” stems from the Law of conservation of Energy. Suppose that an object subject to a conservative force field F travels along a path c(t) with velocity v z c’(t). By definition, the object’s kinetic energy (KE) is émv-vand its total energy E at time t is the sum E = KE + PE = émv - v+P(c(t)). The Law of Conservation of Energ states that E is constant in time. 12. Show that the total energy E = KE + PE is constant in time. UH“? New“; Law F : “"3: (where EC = Fit) 3 a E at ”A . 21—i- H CH; émU U + P(€(‘H) ndo‘l'e . by {newest rule. 2 J. a _. A, .4 _, ,p, (Um-Jog; m + _.. fl .4: g 1 tlU U) at Pam) _2v U r2170. 2 .L (1... __, by chain rule fiar PL'HA-S 2 m U Ca -‘ *4’ * __, __, __,, _. “WORM C m :3? HM) =\7¥{c(+J)-c (1:) : V'M ‘— F-‘J (sac: F=-U?) ' Conservative versus Nonconservative Forces Generally speaking, gravitational fields and static electrical fields are conservative. That means that the work done to move a charged object from one point to another in an electric field does not depend on the path taken, but just on the total displacement. Usually, magnetic fields are not conservative. Also, electric fields induced by a changing magnetic field are nonconservative (see Faraday). Conservative forces: When lifting a book, the work that you do “against gravity” in lifting is stored (somewhere... say “in the gravitational field” or “in the Earth/book system”), and is available for kinetic energy of the book once you let go. Gravitational, elastic (Hooke), and electric forces are all conservative. N onconservative forces: When pushing a book, the work that you do “against friction” is apparently lost ~— it is certainly not available to the book as kinetic energy. Forces that do not store energy are called nonconservative or dissi native forces. An fi‘iction-t pe force, such as air resistance, is a nonconservative force. Homework #25 Reread Section 163 (Due 04/28) Do Section 16.3 Exercises: 3, 5, 9, ll, 13, 17, 18, 19, 23 Prepare for next class session: Read Section 16.4 ...
View Full Document

{[ snackBarMessage ]}