S 16-4 - Math 200 Spring 2010 Worksheet#26 Name K92 Section...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 200, Spring 2010 Worksheet #26 Name K92 Section 16-4 Parametrized Surfaces and Surface Integrals 1. Identify the surface with parametrization CD(u,v) = (u sin 2v,u2,u cos 2v). Pow ‘ ' . .. ‘ : QMN’HC Qtlﬂﬂfl‘mhf are. x._ {ls-‘33”) yth) a: “CaJJV 1 For an} earn- on 44w Svri’ace ) 3941‘..- u‘mhuq. “lags'llu : u :7 Space +here are m Poli’ﬂci-ion-I on ‘Hse {)qmméli’rr +1.9 SUrFQt: L - - - ‘1: XE”; IS «a Cll‘t'biax par-abated whose Orin; is He y’awis- 2. Use Winplot to graph the parametric surfaces and indicate on the graph which grid curves have u constant and which have v constant. (a) CD(u,v) = (usin2v,u2,ucos2v) , 0 S u S 2, 0 5v 5 2:: hoidtiu} M. Conx’mni ) § (m, V): (”a Siniv) ”01.) {JD Casi”) NHCPA are Grimm 1;. H»? yicowhwt Planes. H 3"“?qu u}; u COSQVg) which are QY'Glo \ - (b) @(u,v)=(ucosv,usinv,v),—5\$u\$5,05f527r alas 59mm°f"“ aLod— ”‘9 3‘4‘15 . hairless U. Cas9i'mr} @(QoJU) : {Lie (05V! HQS—InUJU) win-cl» giuﬂ Q. Lek? inciting U (.Onii'an't’ Ely.) Va) 7. (u (051)., U. (in Va, U0) Wind‘- 8N3! Sl‘mtéri" uneS. huidllﬁ U ConS'temi‘, 50’5”") : ( 3. Find a parametric representation for the surface: (a) the part of the sphere x2 + y2 + 22 =16 that lies between the planes z = —2 and z = 2 . A famine-Hi“ refreSGni'oi-u'aa UFO. sphere is? Padiur 1-} I §(@’@) 1' (‘1’ S'MCPMS 6/ ‘1‘ SIM? Slime) 9(016’) The store 'mEv-seai-s .piane i=2 W'H’m 2- :: “from—1’2 :) (“993% 3) (132% 37 ”mm-err}, intersect-Can. w'th 2-=-'2 Correspondr‘h: 43: Ni? ‘-‘~ ”9M, it? SVrf-oca. is described by EMW)={‘f\$in49(056‘;’151h¢7\$:}r9 Word? , (b) the part ofthe circular paraboloid x+y2+z2 =4that lies in front ofthe plane x=0. of 95511-3 V35!” 2% Taking 7 and i 0.; Parameters) E7012): ('1'~77'—%;'))%) Wit??? y2+ilmél1~ . 515a? x 7 o z: - ‘ 1 "- Iii-lac) r?- 7 4 (.056 and 2: — .0 (me , 933—4, :: «010576 +£23.38 24“ That) §( 1. . 4,9») 7- (“ha , Mose, aslna),o:e\$2n~) o M 61 (c) the part of the plane z=x+3that lies inside the cylinder x2+y2=l. 05““) _ 4 Mg 6 as funeral-em, >8}, 1 = 4160929 +‘OLSIhz-5 :5! Lk 44‘ . J 109;; 415i :) 056\$. "‘1 e whoa“ ‘5 9“" 5) N456) TfACOSBJASin6)0Co£6—LS)) 05:15.!) 05-65211“ 4. Find an equation of the tangent plane to the parametric surface at the speciﬁc point: 2 2 _ = = 3. x: u, y: v, 2: av, u 1,121 §(u)u):(q)u:uuu) / EH”)? (1,1,!) g “-_.1 11(1):)» T“(2MJ[ U 112-) (2Mo|‘>x(o 2,17 “73“: (01mg :C5\$-(J TR”) Gt”‘93"“44” °m"*““3'*f|m¢cmn 33 054 ‘ "9 ’3 “‘7 “)(X 0 1(3—1) t-q-[}-1\—t> <"‘> “JI-Jy-Hfi: o 45‘) ;<+-y~ 29:0 5. Consider the parametrization (13(0, z)— (Rcosﬂ, Rsin6,z z), O<t9<27r, —oo<z<ooforacylinder of radius R with equation x2 + y2 :1?2 Compute T6,Tz, 11012), and "n“. z—grid curve To iﬁzagmcose RSmG Ii“)- { Rsme Rmsﬁ 0) T}: %§3L(RCOJS/R31neA9-): ( 0, 0/ ' > ‘ a: _ i. j k . -_._‘ N61“) Text: " 4257.6 9st o _‘-‘ { RCUSQRMQO _ . .4 _ x 2 16 O O I in: s) ishoﬁmu. 6_gndcme . 3 '0“ ' R C05 ei'R Sine :‘ Q a“! 9““ d‘ﬂb-WGURE 9 Grid curves on the cylinder 09+ 0+“? Caimcler' 6. Consider the parametrization (I)(¢,6) = (R sin¢eos 6,Rsin ¢sin 3,}? cos ¢), 0 5 ¢ S It, 0 S (9 S 27:) for a sphere of radius R with equation x2 + y2 +22 2 R2. Compute T¢,T9, n(¢,6), and "n" . Tq) = {Erase Cord?) Rsiaemstpj -Rsinq9) z, -' (-Rsfnesincp, Rwasincp, N» at _. L J h- h(cp’9): To “ﬁre : \QcosGCong Rsiitemscf ~Rsin¢0 ~42 9319 513‘? 1209599599 0 = {R case 51nd), R SinBSIBJ/W Rcosﬁl) 511159 —R sing? < (0:951:10?) SmSSmCP) (05¢) ’1'; UPCI‘DV 2 R5 .5;ch 6r “:9: TpYTe '5 MW"! FIGUR 13 ”h“ " H R SmCﬂéY-H -'-' RLSMCD :r’ngcp 1's Inward Paidiiﬂ 696415? 7. Consider the parametrization CD(x, y): (x, y, g (x 32)) fora graph of a funct1onz—J‘ x ,).y Compute Tx,Ty, n(x,y) , )and "n“ . ,‘ .97.: _- _. bi _ T”‘(JJO)%*> ) \y— 49!,3,> thﬂ): T): X?) _ L, :5) k 0 I 8. Find the surface area of the part of the plane with parametrization @(u,v) = (1+ v,u — 2v,3 — Su + v) that is given by OSuSl,OSvSI . flu 3§a®:<01‘2“i> ) Fo=j¥uﬁ:(b'32‘7 _._> _. t 5 i: ‘ Tu *Tu : ('53) ":5 -" (-4) "5/47 “ll t GHVH-Slz’ +(.,)L =- 107 — d _. l | I 1 §UF¥O¢P Cut-ea " )0)“an H- “ ff‘hb? dudU : ‘ild7ﬁiufdu .2 ”I07 6 a 0 a 9. Find the surface area of the helicoids (or spiral ramp) with parametrization (D(u, v): (ucosv, usinv ,,v) OSu SLOSVSIE. Tu: {cosv Smu/ o> Tu: (—usinu ucaJuJI) 'L g» k :TkxTu' COJUS‘muo - - "‘ — U “MM Mas“ ( Smu) co! )u.> WK“— _ m_ m 1,3511% TQIDIQO‘FIn‘i‘Jm“ 5-19»me Surface 0119‘: : gllnlldnzdj‘ J‘Ofdli‘uidudv: T? [LiWJ'g-‘E‘ (”r-JD; 6r} byTrig. "SvloS‘i't'i'u‘l‘iom’ ﬁt 14:: hang JWLGI'Qy‘MJ :E[ﬁ+-Q/xli+ui)j 44‘9“ dx= 99c 6-016) W:SQCQ S U +1 ldu - ISecesec 9:19 23559: 939 - 'i‘lSGcGtme-iﬂml Sece++w§2k§m1+lngmE§ 10. Find the surface area of the part of the plane 2x+5y+z= 10 that hes 1n51de the cylinder 3:2 +y2= 9. :<l,o):1/_> )T 3:)<a’,\j—s) -.:. K A {a MW , ’a—L : (2,5,1) )jnu:\la+1s+g=d§5 o I -5 SM“ We“ ' X}? “““M 2 Si 030% —’ Jig Slum: El“ 3") X17 5? X1915 Kiwi? 11. Evaluate the surface integral 1 I 1+ x2 + y 2(13, where S IS the helicoid with parametrization ro‘—-- ¢(u,v)=(ucosv,usinv,v),OSu <1, 05v 57:. i M .. . —-« "- . TIL! ‘“ 3;, " ((91115J Emu/0)) T? —€i= (~a5mvlucosull) ¢\ A A “(UUJL'TXH‘FZ C03us‘uo . ’ “ ° m (Sine-cosu)u) )“nH: ”1+ Q’- -uSmU Man: I SJOJ'J'X +7 ”d5of:f‘l51+(umsUIL+[usihU-)* 1113 dkdu (fl/UH: Hulda”: a di‘éJlH-quu 31101139. 36.! : 'L‘J'ﬁlT 12. Evaluate the surface integral J]; xde, where S is the tn'angular region with vertiices (1,0, 0),(0, 2,0), and (0,0,2) g is +9.9 region In ‘W’ (3‘0“? 3X +7 +231 61‘ ‘2'-1~1K 7 over 'HIQ dbdham D: ffXHHO‘X <1 0<}'€2”1¥§ (11°19) EDI y)” 1”1X~7))0‘x‘l)onyI-lx 7 7:14.15: I¥2= 3(x,.,)=)22cy+leH 15 "‘“‘ ) n 1‘“: [1" '1' j] S: 5 1 2x 2‘ 8’HHJ1+(-Jlri—JL=U!E>I W ofxlwrld“ ; r Vfdrdx WE: if :24» ”UM-Wink): 33°[2V3x Ma]: WfJ-anzsg" 13 Evaluate the surface integral ”(x2 + y2 +z 2)d’S, where S IS the pat of the cylinder x2 + y2 =9 hen? the planes 2: 0 and Z: 2, together With its top and bottom disks. Let g. be [Iii-Nd Sufﬁce S loo’rke Swfue 19(62): (3(058 39.136 %) 0560565254. 313 1,941,415 «51:th - -~ Fer 'Hnis Cél’lnal-Er 0‘? radio: 3/”1'1”: 3 55 I‘M-webs: J:f/q+2)-=’3d2c|9 39[17a+230f )"(rcose,rsi;el)lofrf3 0595.111- L " E “:TTXTG‘" C°5951;130):T ,56 ll —l"f0599(‘r0590 3 555\$ (X+7H+2)ds -" 025 of(.,’- +4errd‘9: 0:“ if(r3+‘frdr)::ﬁlirﬁ+lf}3: L???“ On 53. :11§(3 r): (V3056- Y‘ng. 0)) O<r<3 0—59‘21‘1' 3,; o S (X +2 J=d5 f :- Qr, -BJ.7.- Homework #26 3 Rer-{Zad Sectiou 1'6. 4 xfﬂi'o‘) Y‘ dr‘d 5 :jjT ‘90 l" d r \$3) 3- (Due 04/28) Do Section 16 4 Exercises: 3, 5, 8, 9, 17, 19, 21, 23, 27, 29, 35, 40 556127;,2213: 121m + 13rd! H Prepare for next class session: Read Section 16.5 5: 5 15 +5) 2‘“ 1 ._ ’0’ ans; :lil'tn-K Ohslz \$(9 nll=r ...
View Full Document

{[ snackBarMessage ]}

What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern