worsheet 8

# worsheet 8 - Math 200 Spring 2010 Worksheet 8 Section 13-4...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 200, Spring 2010 Worksheet 8 Section 13-4 Curvature 1. Compute the curvature of a circle of radius R. A55Ume aft-ale 055 deu: R19 cent-Erato of "sad" at; "Fiﬁ = < R 035 ‘1'.) R such) 7%“ ‘- (-Rsrnt, Rcosi'7 , n?’(+)ll = R IT cc... be. pammefrtz-ea 0 d 2' m I. " St-ht R St) -— ~ "A .1! o “1:05 "7.le < R a w a. r_ < S\ t , cast? ‘ “Ta” ‘ I T (if) = <- Cost) ‘- snkt> , “Tm” = Heme’ Kw‘ )\?'{+3\l__§ 2. Calculate the curvature 1((1‘) ofthe twisted cubic r(t)=<t,r2,13> . m) : <t,t‘,t‘> =3 leﬂltﬂiiﬂ Wivali“ 1.x {x n y=K(r) ..Il __"I \ if: mum)"— \\ 31: ﬂ = “til—egg) b '2 6t ._:' .40 I , _ Mr (1-) x r (HM ‘2 LUZ) - --———-::—(—-———-—-§—v FIGURE 6 Graph ofthe curvature 1((1') ofthe twisted cubic rm: (t,t2.t3? \\ r (til) : 364;" + 35th H '( X+WtL~QtU 3/2 Maximum curvature at r = 0 FIGURE 7 Graph of twisted cubic rm 2 (LI-3,13) colored by curvature. 3. Compute the curvature of f (x) = x3 —3x2 +4 y at x = 0,1, 2 . H») = x13)?” => Wu: 3x‘-tx 3th =éa~s - Wm: 1c -4 mo - —————————- : v—i—i—ﬁt ,. (\+¥’rx)‘)% (HM-m); iéxvéi for) 2 x3 — 3x2 + 4 Curvature FIGURE 8 Graph of ftx) = x3 —— 3x2 + 4 and the curvature ﬁx). a (I, 019) Corr-e spends +9 “[7 : o 4. Find the vectors T, N, and B at the point (1,0, 0) on the curve r(t) = <cosZr, sin 2t, 2t) "em- 1MB 1 <-Qs{“2t,1cosat 2) "F?+)=<—3srn2t,1cosat,2> " A! "W11 an mm = m = no: 2 “Sink cant i ._. J, __,J < tr)- J U3. J 13> 1 <0) G 5. Find aparametrization of the osculating circle to y=x2 at x=1. __ Let {:(x): X1. use +1“; gave. me‘h‘i ﬁrqit‘dn. : <x)xa> .4! .s 1"{X : 1 ) Stern: Fina e and m. ) <52" F. ¥x:1 K(¥)=_M.L : k1”: % {£62, :éx (1+ ¥'(x)1)J/I (1*thz) 3" ) '5 A“ 9‘“; we; +0 301: 9’00 =1 : - (1 1x) --—’z 2 _. ﬂ - ‘ - l * _.J._~_. : _ < 2.x 1) dired‘on ﬂ m on 69 ( l-Htxa') y; > T06 _‘ “' mrl‘e Hm? :I; (Rx ,1) 1', . ( 1+ ‘i-x‘) V1 ,3 .ikis derive-live/ orﬁoaond +5 F- . . . W19" {biz} reﬁle a. 5.1“ of 4,139qu \$0 (ﬂax)! ) fmu;¢j?5 5171:? H59";- dof‘ Mud- “ k". ""’ —- We Q'sch ‘cm o-f' K], > we): 33L; = 4—2,. s __, we i\<“l)¢)\)n W ) 2: . Fin-“d H9 (Ruhr a; +k3 csculq‘i‘ﬁ‘a CIY-ﬁcle' 09 = m) + m" Rim = <m> + %‘-<-e,i—s>= = <I,x>+%<~2,t> = (4,19 Sire? 3.“ Parame+v?l~e 'er OSCUia‘i'Iis cx'rele J 5%. : L: R km ‘3 ) (adapt-1);.) y “em = 69,3) + 1231mm“) J Homework #8 Reread Section 13.4 (Due 2/19) Do Section 13.4 Exercises: 1, 3, 7, 9, 13, 14, 18, 19,23, 35, 36, 43, 49, 53 Prepare for next class session: Read Section 13.5 ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

worsheet 8 - Math 200 Spring 2010 Worksheet 8 Section 13-4...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online