{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

worsheet 11

# worsheet 11 - Math 200 Spring 2010 Worksheet 11 Name KG...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 200, Spring 2010 Worksheet 11 Name KG; Section 14-3 Partial Derivatives 1. Find the ﬁrst partial derivatives of the ﬁinction f (x, y) = x4y3 + 8x2 y . 3 "12)! (XI?) : [+3 731-15)”. 31‘- a 'lxlli‘)‘ EL?“ ': tf{q‘)-} +16(1-i):32+32:é|r J 3. Compute the partial derivatives of z = 3-C- . y A. K _L g ‘ )— _ 3 -- : ._. JS .. .3— ‘_ - _ 3"" 7M" r , 37(7)”)‘91'7' :3 4. Compute the partial derivatives of z : J9 — x2 — y2 . 3.0—“ _. l q__ 2__ a. ._ _ _ _. X 9* x v 2W1 1x)- WWW A {*1 z _ l I)" ll-X—y "' 2m (~2Y3 1-. -— V 5. Find the partial derivative fx (2,3) for the function f (x, y) = arctan(y/ x) . 4M”) _ \ A155) 3 \ (“7%") = xfj—T "— _ %_5 ww- 2* Her .1 I) 3 _..__ So 4:3:(73) 3 —' 21:”: " 1:3 6. If f (x, y) = 4 —— x2 —- 2y2 , ﬁnd fx (1,1) and fy (1,1) and interpret these numbers as slopes. Illustrate. ( We (31-01% 0-9“ and “we. (lane ya] intersects uh +ke parabola; 2: 1~xL‘ The Slope 0'? He heated lim_ +0 +9“: umbala. 04—1119 Poiril' (1,1,!) ’.5 (MUS-.1, Tim Plug 7::1 Inlet-Sick iLe emulate 1.: Jane Pmelwla 2 x a; = 1—9 " and He shape «rt-WWW“ "lunahqi 1.7ae’ «'1' (MN) I'5 £70..” =-"f. 7. Find the ﬁrst panial derivatives of the function w 2 2e” . Qua _ kite 3‘- X E “A"? : ae"”(x7)+—e""‘ = mam“? 8 Find 62g tfg(x,y)= "y . 6x x—y 2. 3 _ 2 __y_ .. 1i)?- - -I) __ x ﬁt >137(x7) X (3P7): (x-;)1 '2. L. 1 L 3.1 A as, , a A , “(Pg-)9 [ax—AL 2m. 3— —x1 320) 3% 37) ' him?!) (#717 ' (X-vl“ :1 "£11., (ﬁr733 9. Find all second partial derivatives of the function f (x, y) = x4323 + 82:2 y . 1 3~:? ”in : iiﬁixﬁri‘r 3117)) z 3‘); (‘txygﬂ‘xﬂ : ”"7 + ”’1' 3 J _ 1 2. 1X) = :5); :33): (Kilian—17)) 3 '3, (“txy‘tlét‘ﬂ - 12%; Hey «~— 3 1 A ‘1 ‘- L .. t1 . ‘i‘yy: %7L%}(X17+8X7)3 37(3xy'f3x) ‘ 637 92“,“! Stn‘ce ‘i: — A (2‘{ H 3 a a. -— A '1 1' L 3 1- deli-163?: 7“" By 97 x7+ ”7”“ 3x(33}+3x)312x7+l£)r <_ GNfoiit‘nmJ 10. Choose the order widely to calculate the derivative gzzwx, where g(x,y,z,w)=x3wzz2 +sin[ﬂ;—]. ‘ t . A z Di%rtnd-Q+€ w.r.'l:. b6 'S‘H'S'l' a“) : J‘U xgwl-g-‘t- Sn; (3%)) :2 L22. P 3 1 3 44% 3mg: ;(wai) 54mg} 3 ﬂwii :§%2(L+Xag):uz7w 3 3)"lz ‘ - (“VJ awe-h = ”(we 7 x” "3%4wv . 6211 6211 . . . . 11. The wave equation :3—2— = a2 6—2 1s a PDE that describes the motlon of a waveform, Wthh could if x be an ocean wave, a sound wave, a light wave, or a wave traveling along a vibrating string. Show that the function u (x, t) = sin (x ~— at) satisﬁes the wave equation. “x = WWW-at) LMm : ”5'3 (X_“ﬂ .— 'L “H: _ ~C~COS (X-a‘f) la.“ 7' —a Sih(X—1t):QQ—L‘ny 31H _ L iii; ”We Tf“ —a 3x2. Homework #11 Reread Section 14.3 (Due 3/5) Do Section 14.3 Exercises: 13 — 27 (odd), 39, 41, 43, 46, 53, 57, 61, 63, 65, 71, 74, 76ab, 79 Prepare for next class session: Read Section 14.4 ...
View Full Document

{[ snackBarMessage ]}