{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Assign7withfig

# Assign7withfig - Math 128 ASSIGNMENT 7 Winter 2009 Submit...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 128 ASSIGNMENT 7 Winter 2009 Submit all problems by 8:20 am on Wednesday, March 11th in the drop boxes across from MC4066, or in class depending on your instructor’s preference. All solutions must be clearly stated and fully justiﬁed. 1. a) Find polar co-ordinates with 7‘ > 0 and —7r < 9 3 7r for each of the following Cartesian points: i) (1,—1), ii) (-1,\/§) iii) (—1,0) b) Convert each of the following equations to polar form, and sketch the curve in R2. Assume r 2 0. (i) \$2+y2=x (ii) \$2+4y2=4 (iii) y=z (iv) a:=—1 2. a) Find the Cartesian co—ordinates of the following polar points: i) (4,75), ii) (2371:) iii) (1,—g) b) Convert each of the following equations to Cartesian form, and sketch the curve in R2. (i) r=2 (ii) r=5csc6 (iii) r=33in6 (iv) 7‘=—2cos€ 3. Find the area of each of the following: a) the region enclosed by r = 2 — cos 0; b) the region inside r = 3sin6, and outside 7‘ = 1 + sin 6. 4. Show that the cardioid r = a(l + cos 6) can be represented by r = 2a cos2 (3), 0 g 0 S 271', and hence determine its length. 5. Find the length of the curve r = ie‘”, 0 g 9 g b, and prove that it has a ﬁnite t/i limit as b ——> oo. 6. Four bugs are placed at the four corners of a square with side length a. The bugs crawl counterclockwise at the same speed and each bug crawls directly toward the next bug at all times. They approach the center of the square along spiral paths. (a) Find the polar equation of a bug’s path assuming the pole is at the center of the square. (Use the fact that the line joining one bug to the next is tangent to the bug’s path.) (b) Find the distance travelled by a bug by the time it meets the other bugs at the center. ...
View Full Document

{[ snackBarMessage ]}