Lecture_14_10 - b = 3. n P = {1,4} n R =...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Click to edit Master subtitle style Lecture 14
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Predicate Logic Without Quantifiers n Atomic sentences are made of smaller units:  individual constants  and  relation symbols . n The language is interpreted in a structure  consisting of the following: a non-empty set, U. a distinguished element of U for each constant  symbol. a distinguished n-ary relation on U for each n-ary 
Background image of page 2
Example Language n Signature:  Constant symbols: a,b. Relation symbols: P(-), R(-,-). n Language: If t and t’ and constant symbols, then the following  are formulas: t   t’, P(t), R(t,t’). If   and   are formulas, then the following are  φ ψ formulas: ~ ,  φ φ∧ . ψ
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Example Interpretation Let  be the following interpretation of the  language given above.: n U = {1,2,3,4} n a  = 2, 
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: b = 3. n P = {1,4} n R = {(1,2),(2,3),(3,4),(4,1)} The interpretation determines a function from Example Interpretation n Atoms [t t]I = 1 iff t = t. [P(t)]I = 1 iff t is an element of P . [R(t,t)]I = 1 iff ( t , t ) is an element of R . n [~ ]I = 1 iff [ ]I = 0. n [ ]I = 1 iff [ ]I = [ ]I = 1. Some types of questions concerning n Basic conceptual questions n Given an interpretation I and a sentence , determine if is true in I. n Counterexamples, i.e. show that a given implication does not hold. n More generally, given a consistent set of sentences, find an interpretation that satisfies all of the sentences in that set....
View Full Document

This note was uploaded on 02/27/2011 for the course PHILOSOPHY 101 taught by Professor H during the Spring '11 term at Columbia College.

Page1 / 6

Lecture_14_10 - b = 3. n P = {1,4} n R =...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online