Unformatted text preview: entries are positive.) 6. Exercises 2.4, Problem 23 7. Exercises 2.4, Problem 34 8. ± ²³ ´ µ ¶· ¶¸ ¹ ¶º ¶»¸ ¼ · ½ . (a) Find ¾ ¾ ¿ and ¾ ¾ ÀÁ . (b) Let Â be any vector such that ¾Â¾ ¿ ± ¸ . Give an upper bound on ¾ Â¾ ¿ . (i.e. find the maximum value of ¾ Â¾ ¿ ). Find a vector with sum norm = 3 for which this bound is achieved. (i.e. Find a particular vector Â such that ¾Â¾ ¿ ± ¸²ÃÄÅ²¾ Â¾ ¿ ± ¾ ¾ ¿ ¾Â¾ ¿ ). (c) Let Æ be any vector such that ¾Æ¾ ÀÁ ± · . Give an upper bound on ¾ Æ¾ ÀÁ . Find a vector with max norm = 5 for which this bound is achieved. (Hint: To find the bounds, use the inequality ¾ Â¾ Ç ¾ ¾¾Â¾ ) 9. Exercises 2.5, Problem 16a, b...
View
Full Document
 Spring '08
 FRIED
 Vector Space, Markov chain, Hamming Code, one bit, bit data vector

Click to edit the document details