N18 - ME – 510 NUMERICAL METHODS FOR ME II Prof. Dr....

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ME – 510 NUMERICAL METHODS FOR ME II Prof. Dr. Faruk Arınç Fall 2010 Newton - Cotes Formulae Trapezoidal Rule Simpson's One-third Rule Simpson's Three-eights Rule g11 g12 n x n 1 2 n-1 h f (x) d x f 2 f 2 f ... 2 f f 2 x g35 g14 g14 g14 g14 g14 g179 3 ' ' n 2- (x - x ) E (x) f ( ) 12 n g91 g32 g11 g12 n 1- n 2- n 2 1 x f f 4 f 2 ... f 2 f 4 f 3 h x d (x) f n g14 g14 g14 g14 g14 g14 g35 g179 x 5 (4) n 4- (x - x ) E (x) f ( ) 180 n g91 g32 g11 g12 n x n 1 2 3 n-3 n-2 n-1 3 h f (x) d x f 3 f 3 f 2 f ... 2 f 3 f 3 f f 8 x g35 g14 g14 g14 g14 g14 g14 g14 g14 g179 Numerical Integration ME – 510 NUMERICAL METHODS FOR ME II Prof. Dr. Faruk Arınç Fall 2010 Choose x i ’s such that, the sum gives the integral Gauss - Legendre Quadrature Method b n i i a I f (x) dx w f (x ) i g32 g32 g35 g166 g179 n + 1 values of w i n + 1 values of f (x i ) => There are 2 n + 2 parameters which define a polynomial of degree 2 n + 1 ) (x f w n i i i g166 g32 b a f (x) dx g179 exactly when f (x) is a polynomial of degree 2 n + 1. ME – 510 NUMERICAL METHODS FOR ME II Prof. Dr. Faruk Arınç Fall 2010 Replace f(x) by a polynomial of degree n b b b n a a a I f (x)...
View Full Document

Page1 / 5

N18 - ME – 510 NUMERICAL METHODS FOR ME II Prof. Dr....

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online