N27 - ME – 510 NUMERICAL METHODS FOR ME II

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ME – 510 NUMERICAL METHODS FOR ME II g51g85g82g73g17g3g39g85g17g3g41g68g85g88g78g3g36g85g213g81g111 Fall 2007 Runge-Kutta Methods n n n n 2 n+1 n n n n n t ,y t ,y h f f y = y + h f(t ,y ) + + f(t ,y ) + R 2! t y g170 g186 g119 g119 g171 g187 g119 g119 g171 g187 g172 g188 n+1 n n n y = y + a h f(t ,y ) + b h f(t*,y*) + R Taylor Series Order 2: Runge-Kutta Order 2: 2 n+1 n n n n h y = y + h f(t ,y ) + y''(t ) + R 2! t* = t n + g302 h y* = y n + g533 h Find the fractions, a, b, g302 , and g533 such that R’s are the same ME – 510 NUMERICAL METHODS FOR ME II g51g85g82g73g17g3g39g85g17g3g41g68g85g88g78g3g36g85g213g81g111 Fall 2007 Runge-Kutta Methods g62 g64 n n n n n n n n f f f t h , y hf(t ,y ) = f(t ,y ) + h + h f(t ,y ) + ... t y g68 g69 g68 g69 g119 g119 g14 g14 g119 g119 g62 g64 n+1 n n n n n n n y = y + a h f(t ,y ) + b h f t + h , y + h f(t ,y ) + R g68 g69 Expand f (t*,y*) in Taylor Series around t n , y n : Substitute and equate the coefficients of the same powers of h: For h...
View Full Document

This note was uploaded on 02/28/2011 for the course ME 510 taught by Professor Dr.faruckarinc during the Spring '11 term at Middle East Technical University.

Page1 / 3

N27 - ME – 510 NUMERICAL METHODS FOR ME II

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online