# Math 33A Answer KEy - ISM Linear Algebra Section 1.1...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ISM: Linear Algebra Section 1.1 Chapter 1 1.1 1. x + 2 y = 1 2 x + 3 y = 1-2 ร 1st equation โ x + 2 y = 1-y =-1 รท (-1) โ x + 2 y = 1 y = 1-2 ร 2nd equation โ x =-1 y = 1 , so that ( x, y ) = (-1 , 1). 2. 4 x + 3 y = 2 7 x + 5 y = 3 รท 4 โ x + 3 4 y = 1 2 7 x + 5 y = 3-7 ร 1st equation โ x + 3 4 y = 1 2-1 4 y =-1 2 ร (-4) โ x + 3 4 y = 1 2 y = 2-3 4 ร 2nd equation โ x =-1 y = 2 , so that ( x, y ) = (-1 , 2). 3. 2 x + 4 y = 3 3 x + 6 y = 2 รท 2 โ x + 2 y = 3 2 3 x + 6 y = 2-3 ร 1st equation โ x + 2 y = 3 2 =-5 2 So there is no solution. 4. 2 x + 4 y = 2 3 x + 6 y = 3 รท 2 โ x + 2 y = 1 3 x + 6 y = 3-3 ร 1st equation โ x + 2 y = 1 = 0 This system has infinitely many solutions: if we choose y = t , an arbitrary real number, then the equation x + 2 y = 1 gives us x = 1-2 y = 1-2 t . Therefore the general solution is ( x, y ) = (1-2 t, t ), where t is an arbitrary real number. 5. 2 x + 3 y = 0 4 x + 5 y = 0 รท 2 โ x + 3 2 y = 0 4 x + 5 y = 0-4 ร 1st equation โ x + 3 2 y = 0-y = 0 รท (-1) โ x + 3 2 y = 0 y = 0-3 2 ร 2nd equation โ x = 0 y = 0 , so that ( x, y ) = (0 , 0). 6. x + 2 y + 3 z = 8 x + 3 y + 3 z = 10 x + 2 y + 4 z = 9-I-I โ x + 2 y + 3 z = 8 y = 2 z = 1-2( II ) โ x + 3 z = 4 y = 2 z = 1-3( III ) โ x = 1 y = 2 z = 1 , so that ( x, y, z ) = (1 , 2 , 1). 1 Chapter 1 ISM: Linear Algebra 7. x + 2 y + 3 z = 1 x + 3 y + 4 z = 3 x + 4 y + 5 z = 4-I-I โ x + 2 y + 3 z = 1 y + z = 2 2 y + 2 z = 3-2( II )-2( II ) โ x + z =-3 y + z = 2 =-1 This system has no solution. 8. x + 2 y + 3 z = 0 4 x + 5 y + 6 z = 0 7 x + 8 y + 10 z = 0-4( I )-7( I ) โ x + 2 y + 3 z = 0-3 y-6 z = 0-6 y-11 z = 0 รท (-3) โ x + 2 y + 3 z = 0 y + 2 z = 0-6 y-11 z = 0-2( II ) +6( II ) โ x-z = 0 y + 2 z = 0 z = 0 + III-2( III ) โ x = 0 y = 0 z = 0 , so that ( x, y, z ) = (0 , , 0). 9. x + 2 y + 3 z = 1 3 x + 2 y + z = 1 7 x + 2 y-3 z = 1-3( I )-7( I ) โ x + 2 y + 3 z = 1-4 y-8 z =-2-12 y-24 z =-6 รท (-4) โ x + 2 y + 3 z = 1 y + 2 z = 1 2-12 y-24 z =-6-2( II ) +12( II ) โ x-z = 0 y + 2 z = 1 2 = 0 This system has infinitely many solutions: if we choose z = t , an arbitrary real number, then we get x = z = t and y = 1 2-2 z = 1 2-2 t . Therefore, the general solution is ( x, y, z ) = ( t, 1 2-2 t, t ) , where t is an arbitrary real number. 10. x + 2 y + 3 z = 1 2 x + 4 y + 7 z = 2 3 x + 7 y + 11 z = 8-2( I )-3( I ) โ x + 2 y + 3 z = 1 z = 0 y + 2 z = 5 Swap : II โ III โ x + 2 y + 3 z = 1 y + 2 z = 5 z = 0-2( II ) โ x-z =-9 y + 2 z = 5 z = 0 + III-2( III ) โ x =-9 y = 5 z = 0 , so that ( x, y, z ) = (-9 , 5 , 0). 11. x-2 y = 2 3 x + 5 y = 17-3( I ) โ x-2 y = 2 11 y = 11 รท 11 โ x-2 y = 2 y = 1 +2( II ) โ x = 4 y = 1 , so that ( x, y ) = (4 , 1). See Figure 1.1....
View Full Document

## This note was uploaded on 02/28/2011 for the course MATH 33a taught by Professor Lee during the Winter '08 term at UCLA.

### Page1 / 471

Math 33A Answer KEy - ISM Linear Algebra Section 1.1...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online